Computational & Technology Resources
an online resource for computational,
engineering & technology publications |
|
Civil-Comp Proceedings
ISSN 1759-3433 CCP: 112
PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, GPU AND CLOUD COMPUTING FOR ENGINEERING Edited by:
Paper 24
Memory saving GPU implementation of contact search for the discrete element method R. Pacevic1,2, A. Kaceniauskas2, R. Kacianauskas2 and R. Barauskas1
1Department of Applied Informatics, Kaunas University of Technology, Lithuania R. Pacevic, A. Kaceniauskas, R. Kacianauskas, R. Barauskas, "Memory saving GPU implementation of contact search for the discrete element method", in , (Editors), "Proceedings of the Sixth International Conference on Parallel, Distributed, GPU and Cloud Computing for Engineering", Civil-Comp Press, Stirlingshire, UK, Paper 24, 2019. doi:10.4203/ccp.112.24
Keywords: GPU, discrete element method, contact search, OpenCL, hopper flow.
Summary
The paper presents a memory saving GPU implementation of contact search for the discrete
element method (DEM) simulations. The developed GPU implementation is particularly
suitable for DEM simulations of large number of discrete particles, moving in large computational
domains with empty regions, because the size of data structures for contact search
does not depend on the number of uniform grid cells. The implemented hash table of fixed
size has the added benefit of allowing the grid to be unbounded in size. The performance of
the developed OpenCL code is evaluated solving applications of particle fall under gravity.
Performance achieved by using the developed implementation of contact search is compared
with that attained by using the standard uniform grid method. The performance measured on
NVIDIA® Tesla™P100 GPU is compared with that attained by using the same OpenCL code
on Intel®Xeon™ E5-2630 CPU with 20 cores. Sufficiently high speedup values are observed
for different numbers of particles in spite of intensive usage of advanced vector extensions by
OpenCL on CPU. Performed analysis reveals that the developed GPU implementation of contact
search significantly reduce the memory required for discrete element method simulations
of hopper flow.
purchase the full-text of this paper (price £22)
go to the previous paper |
|