Computational & Technology Resources
an online resource for computational,
engineering & technology publications
Civil-Comp Proceedings
ISSN 1759-3433
CCP: 108
PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON CIVIL, STRUCTURAL AND ENVIRONMENTAL ENGINEERING COMPUTING
Edited by: J. Kruis, Y. Tsompanakis and B.H.V. Topping
Paper 189

Critical Examination of Volume-Constrained Topology Optimization for Uncertain Load Magnitude and Direction

A. Csébfalvi1 and J. Lógó2

1University of Pécs, Hungary
2Budapest University of Technology and Economics, Hungary

Full Bibliographic Reference for this paper
, "Critical Examination of Volume-Constrained Topology Optimization for Uncertain Load Magnitude and Direction", in J. Kruis, Y. Tsompanakis, B.H.V. Topping, (Editors), "Proceedings of the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing", Civil-Comp Press, Stirlingshire, UK, Paper 189, 2015. doi:10.4203/ccp.108.189
Keywords: robust topology optimization, uncertain-but-bounded parameters, uncertain load magnitude and direction, expected compliance, worst compliance.

Summary
Uncertainty is an important consideration in topology optimization to produce robust and reliable solutions. In a recent paper, Dunning et al. introduced a new probabilistic approach for robust topology optimization to minimize the volume-constrained expected compliance with uncertainty in the loading magnitude and applied direction, where uncertainties are assumed normally distributed and statistically independent. The model presented was formulated as a statistical model which after some manipulation was replaced by an equivalent multiple load problem in the function of the number of perturbed loads. Our opinion is that the presented parametric statistical approach is far from engineering practice, because in the most applications the desired results are ones that achieve minimal maximal compliance which is a rigorous nonparametric measure of robustness. To demonstrate the differences between the minimal maximal and the conventional expected compliance models two examples with load perturbations are presented. We show that the parametric expected compliance as the preferred measure of robustness is unable to characterize the compliance variability so it has to be replaced with the easy-to-understand maximal (minimal) compliance and the range which are generally applicable nonparametric measures of robustness. In comparison, in the applied nonparametric approach developed by Csébfalvi the load perturbations are handled as "uncertain-but-bounded" parameters. The result is a robust volume-constrained compliance-minimal design which is invariant to the feasible load perturbations. The proposed robust optimization algorithm is a worst compliance searching model, which can be formulated as a small quadratic programming problem with linearized constraints and box constraints. In the model, the robustness criterion was borrowed from Kocvara which defines the optimal robust solution as the minimum of the maximal compliance on the set of load perturbations.

purchase the full-text of this paper (price £20)

go to the previous paper
go to the next paper
return to the table of contents
return to the book description
purchase this book (price £75 +P&P)