Computational & Technology Resources
an online resource for computational,
engineering & technology publications
Civil-Comp Proceedings
ISSN 1759-3433
CCP: 108
PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON CIVIL, STRUCTURAL AND ENVIRONMENTAL ENGINEERING COMPUTING
Edited by: J. Kruis, Y. Tsompanakis and B.H.V. Topping
Paper 108

Free Vibration of Axially Loaded Composite Beams using a Quasi-3D Theory

T.P. Vo1 and J.R. Banerjee2

1Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
2School of Mathematics, Computer Science and Engineering, City University London, United Kingdom

Full Bibliographic Reference for this paper
T.P. Vo, J.R. Banerjee, "Free Vibration of Axially Loaded Composite Beams using a Quasi-3D Theory", in J. Kruis, Y. Tsompanakis, B.H.V. Topping, (Editors), "Proceedings of the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing", Civil-Comp Press, Stirlingshire, UK, Paper 108, 2015. doi:10.4203/ccp.108.108
Keywords: composite beams, vibration, buckling, finite element, quasi-3D theory.

Summary
This paper deals with free vibration behaviour of axially loaded composite beams with arbitrary lay-ups by using a quasi-3D theory, which accounts for shear and normal deformation effects as well as coupling effects arising from the material anisotropy. The axial and transverse displacement variations are assumed to be cubic and quadratic functions of the depth, respectively. Using an assumed displacement field, the governing differential equations of motion are derived by applying Hamilton's principle. A two-node C1 finite element with six degree-of-freedom at each node is developed to solve the free vibration problem. Numerical results are obtained for representative composite beams and the effects of fiber orientation on the natural frequencies and mode shapes are demonstrated. An elastic buckling analysis is also carried out as a degenerate case of free vibration analysis at zero frequency. In order to achieve this, a compressive axial load in the beam is gradually increased so that the natural frequencies decrease and in doing so, there comes a stage when for a particular high value of compressive load, the beam becomes unstable and buckling occurs as a degenerate case of free vibration at zero frequency. The load-frequency curves and the corresponding mode shapes are illustrated. The results are discussed and the paper concludes with some important remarks.

purchase the full-text of this paper (price £20)

go to the previous paper
go to the next paper
return to the table of contents
return to the book description
purchase this book (price £75 +P&P)