Computational & Technology Resources
an online resource for computational,
engineering & technology publications |
|
Civil-Comp Proceedings
ISSN 1759-3433 CCP: 106
PROCEEDINGS OF THE TWELFTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY Edited by:
Paper 23
Buckling of Beams by Refined Theories and Dynamic Stiffness Method A. Pagani1,2, E. Carrera1 and J.R. Banerjee2
1Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
A. Pagani, E. Carrera, J.R. Banerjee, "Buckling of Beams by Refined Theories and Dynamic Stiffness Method", in , (Editors), "Proceedings of the Twelfth International Conference on Computational Structures Technology", Civil-Comp Press, Stirlingshire, UK, Paper 23, 2014. doi:10.4203/ccp.106.23
Keywords: buckling analysis, Carrera unified formulation, beams, dynamic stiffness method..
Summary
This paper is concerned with linearized elastic buckling analysis of columns. The
Carrera unified formulation (CUF) is used to formulate variable kinematics beam theories.
According to the CUF, Taylor-like polynomials of order N are used to interpolate
the cross-sectional displacement field. By using the strong form of the principle of
virtual displacements, governing equations and natural boundary conditions are formulated
in terms of fundamental nuclei, whose formal expressions do not depend on
the order of the theory N. The dynamic stiffness matrix is straightforwardly developed
and the algorithm of Wittrick and Williams is used as solution technique to compute
critical buckling loads for a number of solid and thin-walled metallic and composite
beam-columns. The results computed using the proposed method are compared with
those available in the literature. The accuracy and efficiency of the current approach
as well as its capability to deal with bending-torsion and coupled buckling modes are
demonstrated.
purchase the full-text of this paper (price £20)
go to the previous paper |
|