Computational & Technology Resources
an online resource for computational,
engineering & technology publications |
|
Civil-Comp Proceedings
ISSN 1759-3433 CCP: 104
PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON RAILWAY TECHNOLOGY: RESEARCH, DEVELOPMENT AND MAINTENANCE Edited by: J. Pombo
Paper 185
Dynamic Characterisation of the Wheel/Rail Contact using Ultrasonic Reflectometry L. Zhou, H.P. Brunskill, R. Lewis, M.B. Marshall and R.S. Dwyer-Joyce
Department of Mechanical Engineering, The University of Sheffield, United Kingdom L. Zhou, H.P. Brunskill, R. Lewis, M.B. Marshall, R.S. Dwyer-Joyce, "Dynamic Characterisation of the Wheel/Rail Contact using Ultrasonic Reflectometry", in J. Pombo, (Editor), "Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance", Civil-Comp Press, Stirlingshire, UK, Paper 185, 2014. doi:10.4203/ccp.104.185
Keywords: wheel-rail contact, measurement, real-time, contact pressure.
Summary
The contact condition between the wheel and the rail is paramount to the lifespan,
safety and smooth operation of any rail network. The wheel/rail contact condition has
been estimated, calculated and simulated for many years, but accurate dynamic
measurement has still not been achieved. Methods using pressure sensitive films and
controlled air flow have been employed, but are both limited.
Ultrasonic reflectometry has been successfully used to characterise various static
contacts. This is achieved by pulsing an ultrasonic wave packet through a material
that is either fully or partially reflected at an interface. The reflected waveform is then
measured and information about the contact can be extracted from the A-Scan. The
interface is modelled using a quasi-static spring approach. The asperities behave like
springs, as the contact load is increased, the asperities deform accordingly allowing a
greater amount of ultrasonic transmission. A reflection coefficient can be determined
by calculating the ratio of the reflected ultrasound to the ultrasound incident on the
interface. This can be used to determine the interfacial stiffness. Stiffness can be
related to contact pressure by performing a calibration procedure.
Previous work has relied on a focusing transducer and a 2-dimensional scanning
arrangement which results in a high resolution image of the wheel/rail contact, but is
limited to static loading of a specimen cut from a wheel and rail.
The work described in this paper has enabled the measurement of a dynamic
wheel/rail contact patch using an array of 64 ultrasonic elements mounted in the rail.
Each element is individually pulsed in sequence to build up a linear measurement of
the interface. These cross-sectional, line measurements are then processed and
collated resulting in a 2-dimensional contact patch.
Measurements have been taken at different speeds and loads. Work is now
underway to increase the speed of the measurement.
purchase the full-text of this paper (price £20)
go to the previous paper |
|