Computational & Technology Resources
an online resource for computational,
engineering & technology publications
Civil-Comp Proceedings
ISSN 1759-3433
CCP: 93
PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY
Edited by:
Paper 160

Dynamic Stability of Functionally Graded Material Cylindrical Shells based on Higher-Order Theory using the Finite Strip Method

H.R. Ovesy and J. Fazilati

Aerospace Engineering Department and the Center of Excellence in Computational Aerospace Engineering,
Amirkabir University of Technology, Tehran, Iran

Full Bibliographic Reference for this paper
H.R. Ovesy, J. Fazilati, "Dynamic Stability of Functionally Graded Material Cylindrical Shells based on Higher-Order Theory using the Finite Strip Method", in , (Editors), "Proceedings of the Tenth International Conference on Computational Structures Technology", Civil-Comp Press, Stirlingshire, UK, Paper 160, 2010. doi:10.4203/ccp.93.160
Keywords: functionally graded materials, moderately thick shells, dynamic instability, higher order shear deformation theory, finite strip method.

Summary
Yang and Shen [1] have studied the influences of electromechanical coupling effects and physical dimensions on the parametric/dynamic instability regions of functionally graded material (FGM) shell structure. They have utilized a semi-analytical Galerkin-DQM approach on the assumption of higher order shear deformation theory (HSDT) of Reddy's type. Pradyumna and Bandyopadhyay [2] have employed a higher order finite element in order to investigate the free vibration of FGM curved panels. The authors [3] have developed a semi-analytical finite strip method (FSM) based on the classical shell assumptions (CLST). They have conducted free vibration analysis of thin FGM cylindrical shells in order to extract the natural mode shapes and the corresponding frequencies. Subsequently, the same authors have developed finite strip formulations to perform the parametric dynamic instability analysis of plates and cylindrical shell panels made from composite laminates based on CLST [4] as well as HSDT [5] assumptions.

In the current paper, it is the first time that a dynamic stability analysis of moderately thick cylindrical panels made from FGM is conducted by employing finite strip formulations based on a Reddy-type HSDT. Two versions of the FSM, namely semi-analytical and B-spline methods are developed. The mechanical properties of FGMs are assumed to change in the thickness direction according to a power-law function. The temperature effects are ignored and the strain terms are expressed in terms of the Koiter-Sanders theory of shallow shells. In order to demonstrate the capabilities of the methods developed in predicting the parametric behaviour of the structures considered, some representative results are obtained and compared with those in the literature wherever available.

References
1
J. Yang, H.S. Shen, "Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels", J. Sound Vibration, 261, 871-93, 2003. doi:10.1016/S0022-460X(02)01015-5
2
S. Pradyumna, J.N. Bandyopadhyay, "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound and Vibration, 318, 176-92, 2008. doi:10.1016/j.jsv.2008.03.056
3
J. Fazilati, H.R. Ovesy, "Prediction of the dynamic behavior of functionally graded thin cylindrical shells using finite strip method", in "Proceedings of the 17th. Int. Conf. on Mechanical Engineering (ISME2009)", University of Tehran, Iran, May, 2009.
4
J. Fazilati, H.R. Ovesy, "Dynamic instability analysis of composite laminated thin-walled structures using two versions of FSM", Composite Structures, 2010. doi:10.1016/j.compstruct.2009.11.002
5
J. Fazilati, H.R. Ovesy, "Dynamic stability of laminated cylindrical shells based on a higher-order shear deformation theory using FSM", in "Proceedings of the IJSSD Symposium on progress in Structural Stability and Dynamics", Hong Kong, China, Dec., 2009.

purchase the full-text of this paper (price £20)

go to the previous paper
go to the next paper
return to the table of contents
return to the book description
purchase this book (price £145 +P&P)