Computational & Technology Resources
an online resource for computational,
engineering & technology publications |
|
Civil-Comp Proceedings
ISSN 1759-3433 CCP: 84
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY Edited by: B.H.V. Topping, G. Montero and R. Montenegro
Paper 45
An Artificial Immune System Algorithm for Structural Optimization C.J. Shih and B.S. Chen
Department of Mechanical and Electro-Mechanical Engineering, Tamkang University, Tamsui, Taiwan R.O.C. C.J. Shih, B.S. Chen, "An Artificial Immune System Algorithm for Structural Optimization", in B.H.V. Topping, G. Montero, R. Montenegro, (Editors), "Proceedings of the Fifth International Conference on Engineering Computational Technology", Civil-Comp Press, Stirlingshire, UK, Paper 45, 2006. doi:10.4203/ccp.84.45
Keywords: immune system, optimum design, artificial intelligence, structural optimization, biological computation.
Summary
A biological immune system [1] can precisely detect and eliminate toxic substances
and pathogens so that the body can by itself remain secure and healthy. Once
pathogens have entered the body, they are dealt with by the innate immune system
and then by the adaptive immune system. This paper utilizes such a concept to
develop an efficient and accurate zero-order optimization approach. The affinity
maturation theory in the immune system performs as the basis to build the main
frame in this development.
Learning, memory, diversity, hyper-mutation, differentiation and natural selection are the primary operators to ensure the proposed approach has the global as well as the local search potential. The technique of hyper-mutation is extensively modified to fulfil the primary search that shows effectively powerful. Numerically, one can replicate the adaptive immune system to proliferate diversity immune cells for bind pathogens. An algorithm of simulating the affinity maturation is as follows:
For example, a 72-bar space truss is required to support two load conditions given in reference [2] and is to be designed with allowable constraints and the allowable displacements. This problem was solved by the proposed approach in which the total population is 100, the maximum generations is 300. Other prescribed number of group population are , , , and . Using the proposed immune based approach to solve the problem ten times to find the optimum cross-sectional area of 16 members by minimizing the total structural weight. Figure 1 shows the iteration history of the ten searches for the optimum. It is obvious to see that the proposed method is robust and gives accurate results. References
purchase the full-text of this paper (price £20)
go to the previous paper |
|