Computational & Technology Resources
an online resource for computational,
engineering & technology publications |
|
Civil-Comp Proceedings
ISSN 1759-3433 CCP: 83
PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY Edited by: B.H.V. Topping, G. Montero and R. Montenegro
Paper 159
Bending Analysis of Curve-Sided Quadrilateral Thin Plates Using the Extended Kantorovich Method M.M. Aghdam and M.H. Babaei
Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran M.M. Aghdam, M.H. Babaei, "Bending Analysis of Curve-Sided Quadrilateral Thin Plates Using the Extended Kantorovich Method", in B.H.V. Topping, G. Montero, R. Montenegro, (Editors), "Proceedings of the Eighth International Conference on Computational Structures Technology", Civil-Comp Press, Stirlingshire, UK, Paper 159, 2006. doi:10.4203/ccp.83.159
Keywords: thin quadrilateral plate, conformal mapping, extended Kantorovich method, bending analysis.
Summary
The extended Kantorovich method (EKM) has been extensively used to obtain
approximate solutions for various two-dimensional elasticity problems including bending, vibration
and buckling analyses of plates [1,2,3,4,5,6,7]. Among the advantages of the method,
one can refer to the rapid convergence and highly accurate results together with less
computational effort and the possibility of obtaining approximate closed form solutions for the
governing partial differential equations. In addition, the EKM, in comparison with other
weighted residual methods, has an attractive feature in the sense that the initial estimate for
the solution has no effect upon the final results. Furthermore, in the EKM a set of
ordinary differential equations (ODEs) should be solved iteratively instead of solving
more complicated partial differential equations. However, it should be noted that
application of the EKM in the literature is limited to rectangular plates. Various two-dimensional
elasticity analyses including bending [2,3,4], vibration [5,6] and buckling [7] of
rectangular isotropic and orthotropic plates with either constant or variable thickness can
be found in the literature.
The attention of this article is focused on the applicability of the EKM to obtain solutions for plates with a more general shape. As the first step, bending of a fully clamped, curve-sided quadrilateral thin plate is considered. To do so, the physical domain of the problem is mapped to a proper rectangular domain using conformal mapping. The new version of the governing partial differential equation and proper boundary conditions in the mapped coordinate system is derived. This equation consists of a forth order PDE with variable coefficients. Based on the EKM, assuming a separable function for displacement of the plate together with Galerkin weighted residual technique converts the governing equation into two separate forth order ordinary differential equations in terms of u and v. Finally, the ODEs obtained are solved using the boundary conditions of the plate in an iterative way until convergence of the results is achieved. An error analysis is carried out to examine rapid convergence and accuracy of the method by substitution of the obtained solutions to the original governing equation after every iteration. It is shown that the method offers very fast convergence as two to three iterations were enough to obtain final results. Results of this study also revealed that the method provides highly accurate predictions for a general shape quadrilateral thin plate. Apart from the error analysis, the accuracy of the results for both deflection and stress components at various points of the plate were examined using finite element analysis. Due to lack of results for this type of plate in the literature, a finite element analysis was also carried out using the commercial finite element code ANSYS. Comparisons of the results show close agreement with those of the finite element analysis. It is also found that the method is computationally efficient as minimum computational time needed to obtain final results with desired accuracy. Furthermore, results of this study were found to be quite encouraging to apply the method to more complicated engineering problems in order to benefit the various aforementioned advantages of the method. References
purchase the full-text of this paper (price £20)
go to the previous paper |
|