Computational & Technology Resources
an online resource for computational,
engineering & technology publications |
|
Civil-Comp Proceedings
ISSN 1759-3433 CCP: 83
PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY Edited by: B.H.V. Topping, G. Montero and R. Montenegro
Paper 73
Identification of Damping Using Proper Orthogonal Decomposition M. Khalil1, S. Adhikari2 and A. Sarkar1
1Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada
M. Khalil, S. Adhikari, A. Sarkar, "Identification of Damping Using Proper Orthogonal Decomposition", in B.H.V. Topping, G. Montero, R. Montenegro, (Editors), "Proceedings of the Eighth International Conference on Computational Structures Technology", Civil-Comp Press, Stirlingshire, UK, Paper 73, 2006. doi:10.4203/ccp.83.73
Keywords: system identification, proper orthogonal decomposition, Tikhonov regularisation, damping matrix identification, least squares estimation, constrained optimisation, Kronecker algebra.
Summary
The identification of damping plays a crucial role in the
validation of numerical models of dynamical systems. In spite of
extensive research, the knowledge regarding damping forces is
least developed compared to the other forces acting on a
structure. There are two basic reasons for this. Firstly, from
a theoretical point of view, it is not in general clear which state
variables are relevant to determine the damping forces. This fact
makes it difficult to select what mathematical form of damping
model should be used at the first place, let alone how to identify
its parameters from the experimental measurements. Secondly, from
experimental point of view, unlike the mass and stiffness
properties, the damping properties can be identified only by a
dynamic testing.
The most common method to model damping in a multiple-degree-of-freedom linear systems is to assume the so called viscous damping. Many researchers have proposed methods to identify viscous damping matrix from experimental measurements. These methods can be divided into two broad categories: (a) damping identification from modal testing and analysis and (b) direct damping identification from the forced response measurements in the frequency or time domain. The modal method entails estimating the modal parameters, such as natural frequencies, damping ratio and mode shapes, from the measured transfer functions, and consequently the damping matrix are reconstructed from the estimated modal parameters. Direct methods on the other hand bypass the modal parameter extraction step and fit the damping matrix to the measured response. The common issues regarding the identification of the damping matrix using conventional modal analysis are (a) the accuracy of the identified modal parameters, and consequently the system matrices, rely on the number of distinct 'peaks' in the measured frequency response functions (FRFs), and (b) if the damping is non-proportional, the identification of complex modes poses a serious challenge [1]. The first problem is inherent to conventional modal analysis. If the peaks in the measured FRFs are not distinct or are closely spaced, the modal parameter extraction procedure is difficult to apply [2]. As a consequence, the identified system matrices using the extracted modal parameters become erroneous. It is therefore difficult to extend the modal identification procedure in the mid-frequency range, or for periodic systems (such as bladed disks in turbomachineries) inherently containing closely spaced modes. The second problem arises for systems with high damping such as a panel with viscoelastic damping. In this paper a new approach using proper orthogonal decomposition is proposed which can potentially circumvent, or at least alleviate, these difficulties. The proper orthogonal decomposition (POD) method, also known as principle component analysis (PCA), entails the extraction of the dominant eigen-subspace of the response correlation matrix, namely proper orthogonal modes (POMs), over a given frequency band of interest. These dominant eigenvectors span the system response optimally for the prescribed frequency range of interest. Thus, the POD method has been used for the model reduction of linear as well as non-linear dynamical systems [3,4]. The primary objective of this investigation is the identification of the damping matrix of a general linear dynamical system in the medium frequency range, with the mass and stiffness matrices being known a priori with a reasonable assumption. To achieve this objective, the POD method is adopted as a tool for a model reduction strategy to solve the inverse problem involving system identification over a frequency range of interest. A novel mathematical framework exploiting Kronecker Algebra is presented which allows for estimation of the POD reduced order damping matrix elements in the least-square sense. Furthermore, in order to deal with the ill-posedness of the problem, prior information concerning the system, such as symmetry of the damping matrix, is introduced as Tikhonov regularisation [5] in a constrained optimisation framework. Using computer simulation, it was shown that with only a few POD modes, the reconstructed FRF matches reasonably well with the original FRF. References
purchase the full-text of this paper (price £20)
go to the previous paper |
|