Computational & Technology Resources
an online resource for computational,
engineering & technology publications |
|
Civil-Comp Proceedings
ISSN 1759-3433 CCP: 73
PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON CIVIL AND STRUCTURAL ENGINEERING COMPUTING Edited by: B.H.V. Topping
Paper 58
Free Vibration of Sandwich Beams using the Dynamic Stiffness Method J.R. Banerjee
School of Engineering, City University, London, England J.R. Banerjee, "Free Vibration of Sandwich Beams using the Dynamic Stiffness Method", in B.H.V. Topping, (Editor), "Proceedings of the Eighth International Conference on Civil and Structural Engineering Computing", Civil-Comp Press, Stirlingshire, UK, Paper 58, 2001. doi:10.4203/ccp.73.58
Keywords: sandwich beam, free vibration, dynamic stiffness.
Summary
Sandwich beams have widespread applications in engineering as load carrying
structural members with high strength to weight ratios. This has stimulated
continuing research in this area. In particular, the free vibration analysis of sandwich
beams has been carried out by a number of
investigators[1,2,3,4,5,6].
Di Taranto[1] and
Mead and Marcus[2] are some of the earlier investigators who studied the free
vibration problem of sandwich beams using classical approach. In essence they
solved the governing differential equations of motion of a sandwich beam and
imposed boundary conditions to obtain the natural frequencies and mode shapes. In
later years, with the advent of digital computers, finite element based solutions
became available[3,5]. One
of the interesting features of the published literature in
this area is that the value judgement made by various investigators when
establishing the model accuracy of a composite beam has been interestingly, and
often intriguingly, diverse. There is no doubt that there is considerable difficulty in
obtaining an accurate analytical (mathematical) model for a sandwich beam. The
difficulty arises from the very nature of the problem in which two or more structural
components with different properties are joined together. For instance in the case of
a three-layered sandwich beam consisting of a (soft) core and two face materials, the
difficulty in the formulation would appear when preserving equilibrium and
compatibility conditions in the interfaces between the core and the face materials. In
the early eighties Mead[4] made a note worthy contribution in which he made an
objective assessment of various sandwich beam models which were used to
investigate the free vibration characteristics. Basically he compared the governing
differential equations derived by various authors for free vibration analysis of
sandwich beams. A relatively simple (but practically realistic) model assumes that
the top and the bottom faces of a sandwich beam deform according to the Bernoulli-
Euler beam theory whereas the core deforms only in shear. This model has been
used by many[1,2] and has
provided an important basis for further development on
the subject. Apparently, the dynamic stiffness method, which has all the essential
features of the finite element method, but has much better model accuracy, has not
been applied to sandwich beams.
Thus the main purpose of this paper is to develop the dynamic stiffness matrix of a three-layered symmetric sandwich beam and then to use it to investigate its free vibration characteristics. The relatively simple model described above is taken in this preliminary, but novel study and the work has been greatly assisted by the symbolic computation package REDUCE[7]. The ensuing dynamic stiffness matrix is used in conjunction with the well-known Wittrick-Williams algorithm[8] to obtain the natural frequencies and mode shapes of an illustrative example taken from the literature. The results are discussed and some conclusions are drawn. It is expected that the present research will pave the way for further research on dynamic stiffness formulation of complex sandwich structural elements. References
purchase the full-text of this paper (price £20)
go to the previous paper |
|