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Abstract 
 
A layerwise finite element model is developed in a mixed least-squares formulation 
for static analysis of multilayered composite plates. The model assumes a layerwise 
variable description of displacements, transverse stresses and in-plane strains, taken 
as independent variables. The mixed formulation allows to completely and a priori 
fulfil the known 0

zC  requirements, which refer to the zig-zag form of displacements 
in the thickness direction and the interlaminar continuity of transverse stresses, due 
to compatibility and equilibrium reasons, respectively. This contrasts with layerwise 
displacement-based models that usually cannot a priori account for the interlaminar 
continuity of transverse stresses. In addition, the benefit of mixed least-squares 
formulation, as opposed to mixed weak form models, is that it leads to a variational 
unconstrained minimization problem, where the finite element approximating spaces 
can be chosen independently. Numerical examples are shown to assess the layerwise 
mixed least-squares model predictive capabilities compared to three-dimensional 
elasticity solutions and also other finite element results available in literature. Most 
notably, the present model is able to achieve accurate results in very good agreement 
with three-dimensional solutions and is shown to be insensitive to shear-locking. 
 
Keywords: layerwise theory, mixed formulation, least-squares formulation, finite 
element model, multilayered composite plate. 
 
1  Introduction 
 
As multilayered composite structures are increasingly evolving from secondary to 
primary structural components, the role of structural analysis is enlarged to reach a 
highly accurate assessment of the structure response. In overview, the main available 
theories for multilayered composite plates and shells are axiomatic type approaches, 
which rely on certain assumptions concerning the thickness z-expansion for the 
chosen unknown variables. A historical view and evaluation of the most important 
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theories is presented in the review articles [1–3] and in Reddy [4, 5]. The theories 
differ in equivalent single-layer or layerwise variable descriptions as well as in the 
chosen unknown variables, whether displacement, stress or mixed formulations. In 
equivalent single-layer variable descriptions the variables are introduced for the 
whole plate or shell, whereas in layerwise variable descriptions each layer is seen as 
an independent plate or shell, so the number of independent variables is dependent 
on the number of layers. Typically, variational principles have been established in 
literature to derive governing equations consistent with the chosen formulations. The 
widespread displacement formulations relate to the well-known principle of virtual 
displacement and the alternative mixed formulations derive from the Hu-Washizu or 
the Hellinger-Reissner variational principles [6, 7]. 

As demonstrated by early three-dimensional elasticity solutions by Pagano and 
Hatfield [8, 9], multilayered composite structures may exhibit complicating effects 
introduced by anisotropic behaviour, such as high transverse deformability, zig-zag 
effects and interlaminar continuity. Actually, multilayered composite structures may 
show high in-plane anisotropy due to different mechanical-physical properties in 
different in-plane directions. Consequently, these structures can display higher 
transverse flexibility with respect to in-plane deformability when compared to the 
isotropic single-layer structures. In other words, multilayered composite structures 
are high transversely deformable structures. Furthermore, multilayered constructions 
are also transversely anisotropic structures given the different mechanical-physical 
properties in the thickness direction. As a result, the displacements may exhibit 
discontinuous derivatives in correspondence to each layer interface. This is known 
as the zig-zag (ZZ) form of the displacements in the thickness direction. In addition, 
for equilibrium reasons, the transverse stresses must be continuous at each layer 
interface, which is known in literature as interlaminar continuity (IC). Ultimately, 
both displacements and transverse stresses must be 0C  continuous functions in the 
thickness z-direction, due to compatibility and equilibrium reasons, respectively. 
Altogether, ZZ and IC are usually referred to as 0

zC  requirements [10, 11]. The 
fulfilment of 0

zC  requirements is crucial in the development of any theory suitable 
for multilayered structures. 

Classical finite element models originally developed for single-layer isotropic 
structures were early on extended to multilayered composite plates and shells, as 
equivalent single-layer models (ESLMs). Namely, the classical lamination theory 
(CLT) and first-order shear deformation theory (FSDT) are known to simply provide 
a reasonable description of the global response of multilayered structures, without 
accounting for 0

zC  requirements. Improvements through partial fulfilment of 0
zC  

requirements were later on achieved by higher-order shear deformation theories 
(HSDTs). Nevertheless, because of the intrinsic material couplings between the 
transverse normal and in-plane stress components, ESLMs experience difficulties in 
extending zig-zag forms to the transverse displacement or in accounting for the 
interlaminar continuity of the transverse normal stress. Hence, ESLMs are rather 
deficient in analysing very thick multilayered structures, in which the transverse 
normal stress plays a determinant role. In this respect, layerwise models (LWMs), in 
which two-dimensional approximations are introduced at a layer level, are much 
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better suited to attain an acceptable level of accuracy compared to three-dimensional 
solutions. However, most available LWMs do not a priori and completely fulfil 0

zC  
requirements. The typical displacement-based LWMs cannot a priori account for the 
interlaminar continuity of transverse stresses, which instead are usually evaluated a 
posteriori by integration of the three-dimensional equilibrium equations.  

The convenience of assuming as independent variables equally displacements and 
transverse stresses intuitively appeared to Reissner [12, 13], who proposed a mixed 
formulation as a tool to variationally derive governing equilibrium and constitutive 
equations in terms of these independent variables. Some ESLMs made use of this 
mixed formulation, but for an accurate description of local response of multilayered 
composite structures, LWMs are required. Specifically, Carrera developed LWMs 
based upon Reissner’s mixed variational theorem that completely and a priori fulfil 

0
zC  requirements with very successful results [14–18]. Later on, Lage et al. [19, 20] 

extended the layerwise mixed model by Carrera to include piezoelectric/magnetic 
plates achieving good results as well.  

Finite element models are normally based on weak formulations, whether ESLMs 
or LWMs, with displacement-based or mixed formulations. One of most mentioned 
issues in finite element modelling is shear-locking problems, which refer to the 
computational difficulties encountered when modelling thin plates or shells. Shear-
locking is generally handled by numerical integration techniques or by using higher-
order elements that experience relatively less locking but at the expense of a slower 
convergence. An additional issue in mixed weak formulations is that to be reliable 
the finite element approximation spaces must satisfy a so called inf-sup condition. 
The alternative to weak formulations is weighted residual formulations. Among 
them, least-squares formulations are unique in the basic idea of minimizing the error 
introduced in the approximation of the governing equations. In fact, the benefit of 
least-squares variational principle combined with a mixed formulation is that it leads 
to a variational unconstrained minimization problem, where the finite element 
approximating spaces can be chosen independently. Hence, stability requirements as 
the inf-sup condition never arise. Moreover, mixed least-squares formulations yield 
symmetric positive-definite stiffness matrices, contrary to mixed weak formulations. 
Earlier works on mixed least-squares formulations show promising theoretical and 
computational advantages. Specifically, Pontaza and Reddy [21] developed a mixed 
least-squares model for bending of single-layer isotropic plates, using the classical 
plate theory (CPT) and FSDT. Pontaza [22] also demonstrated the merit of least-
squares finite element models applied to both solid and fluid mechanics. The present 
authors’ previous works extended Pontaza and Reddy mixed least-squares FSDT 
finite element model to static and free vibration analysis of multilayered composite 
plates [23, 24]. Most notably, these preceding works show that mixed least-squares 
models using high-order 0C  basis functions in the two-dimensional approximations 
with full integration are insensitive to shear-locking. In fact, Pontaza and Reddy [21, 
22] demonstrated the exponential decay of the least-squares functional for increasing 
p-order expansion of the two-dimensional approximations. 

From the overall discussion, it emerges that (a) LWMs are required to accurately 
describe multilayered composite structures, (b) mixed formulations are indeed useful 
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to completely and a priori fulfil 0
zC  requirements and (c) the benefits of mixed least-

squares formulations motivates the present development of a layerwise mixed least-
squares model for analysis of multilayered composite plates. 

This paper is organised as follows. Section 2 is devoted to the description of the 
present model: the chosen layerwise variable description in a mixed formulation is 
presented, the system of consistent governing equations is established, the least-
squares formulation is introduced and in the end, the layerwise mixed least-squares 
model is shown. Section 3 presents numerical examples to assess the present model 
predicted capabilities compared to three-dimensional elasticity solutions and other 
finite element results available in literature. The last Section 4 summarizes the main 
conclusions. 
 
2  Layerwise Mixed Least-Squares Model 
 
Consider the multilayered plate of total thickness h and rectangular planar geometry 
Ω composed of N orthotropic layers, as shown in Figure 1. A rectangular coordinate 
system ( )zyx ,,  is used with the z-axis taken positive upward from the midplane 
along the thickness direction. The superscript k is assigned to k-layer specifics, while 
the subscripts b and t designate the layer bottom and top surfaces, respectively. 
 

 
 

Figure 1: Geometry and notation of a multilayered plate. 
 
2.1 Layerwise Variable Description 
 
To completely and a priori fulfil 0

zC  requirements, a layerwise variable description 
of both displacements ( )kkk wvu ,,  and transverse stresses ( )k

zz
k
yz

k
xz σσσ ,,  needs to be 

assumed. Additionally, the chosen mixed formulation assumes a layerwise variable 
description of in-plane strains ( )k

xy
k
yy

k
xx γεε ,, , merely to ensure a first-order system of 

consistent governing equations in the end. This is considered in the best interest of 
least-squares formulation as it will be explained later on. Accordingly, the assumed 
expansions in the thickness direction of each k-layer, for all independent variables, 



5 

are the following: 
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The functions ( )zk

suφ ,…, ( )zk

sxyγφ  are one-dimensional 0C  nodal basis functions 

in the thickness direction, which are defined only within the k-layer. The number of 
nodes through the layer thickness, um ,….,

xy
mγ  define the expansion p-order in the 

z-direction of the k-layer, as 1−= mp . Hence, the functions ( )yxu k
s , ,…, ( )yxk

sxy ,γ  
denote the variables nodal values at the s-plane of the k-layer. Details on the adopted 

0C  basis functions are given later in Subsection 2.4. 
 
2.1.1 Interlaminar Compatibility and Equilibrium Conditions 
 
In view of the adopted layerwise mixed formulation 0

zC  requirements can easily be 
completely and a priori fulfilled just by assembling the layers. See Carrera [14, 18] 
for details on assembly from layer to multilayer. In other words, the top and bottom 
surfaces of adjacent layers must agree in both displacements and transverse stresses, 
as stated by 0

zC  requirements, but also in the in-plane strains (which is legitimate), 
given the chosen mixed formulation. Altogether, the interlaminar conditions are: 
  
 1+= k

b
k
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b
k
t vv , 1+= k
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k
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k
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tyy εε , 1+= k

bxy
k
txy γγ ,     for 1,,1 −= Nk …  

 
2.2 Governing Equations for the Layer 
 
The fundamental equations for linear static analysis of each k-layer, which is seen as 
an individual plate, are the equilibrium equations, the constitutive equations and the 
strain-displacement equations, consistent with three-dimensional linear elasticity, as 
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follows: 
 

 Equilibrium Equations 
 

 0=+
∂

∂
+

∂

∂
+

∂
∂ k

x

k
xz

k
xy

k
xx f

zyx
σσσ

 

 0=+
∂

∂
+

∂

∂
+

∂

∂ k
y

k
yz

k
yy

k
xy f

zyx
σσσ

 (3) 

 0=+
∂

∂
+

∂

∂
+

∂
∂ k

z

k
zz

k
yz

k
xz f

zyx
σσσ

 

 
 Constitutive Equations (in a matrix form)  

 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

k
zz

k
zy

k
zx

k

k

k

k
xy

k
yy

k
xx

kkk

kkk

kkk

k
xy

k
yy

k
xx

C
C
C

CCC
CCC
CCC

ε
γ
γ

γ
ε
ε

σ
σ
σ

36

23

13

662616

262212

161211

00
00
00

 (4a) 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

k
zz

k
zy

k
zx

k

kk

kk

k
xy

k
yy

k
xx

kkkk
zz

k
yz

k
xz

C
CC
CC

CCC ε
γ
γ

γ
ε
ε

σ
σ
σ

33

4445

4555

362313 00
0
0

000
000

 (4b) 

 
 Strain-Displacement Equations 
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These equations are written in reference to the multilayer plate coordinate system 

( )zyx ,,  shown in Figure 1. Hence, kC  represent the transformed material stiffness 
coefficients of the (orthotropic) k-layer referred to the ( )zyx ,,  coordinate system. In 
addition, kf  denotes the body force components per unit volume. See Reddy [4] for 
more details. 

The key to derive a system of governing equations consistent with the partial 
mixed formulation chosen, resides in a convenient manipulation of the constitutive 
equations. The purpose is to write the in-plane stresses and transverse strains only as 
function of chosen independent variables, namely, the transverse stresses and the in-
plane strains. The matrix form used in the above constitutive equations with in-plane 
and transverse variables written separately, rather reveals the manipulations needed. 
Ultimately, the rearranged constitutive equations take the following form: 
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The governing equations for linear static analysis of the k-layer, consistent with 

the chosen mixed formulation, can now be established. The equilibrium equations 
given in Equation (3) are rewritten using Equation (6a) in order to give equilibrium 
equations solely as function of transverse stresses and in-plane strains, which are 
independent variables of the mixed formulation. Hence, the differential equilibrium 
equations of each k-layer are considered as follows: 
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Furthermore, in view of the partial mixed formulation chosen, these equilibrium 

equations must be accompanied by partial constitutive equations and partial strain-
displacement equations. Since transverse stresses and in-plane strains are chosen 
independent variables, the partial constitutive equations for transverse stresses given 
in Equation (4b) and the partial strain-displacement equations for in-plane strains 
given in Equation (5a) must be considered. Nonetheless, Equation (4b) needs to be 
rewritten using Equation (5b) in order to be in terms of independent variables only. 
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Explicitly, these accompanying governing equations are: 
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Therefore, the complete system of consistent governing equations for linear static 

analysis of the k-layer, given by Equations (8), (9) and (10), consists of equilibrium 
equations, partial constitutive equations and partial strain-displacement equations, 
written in terms of all independent variables of the mixed formulation, namely, the 
displacements, transverse stresses and in-plane strains. 

 
2.3 Least-Squares Formulation 
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The least-squares variational principle simply states that the desired solution for 

the independent variables, (within an admissible space that satisfies the boundary 
conditions), is the one that minimizes the least-squares functional. Hence, the mixed 
least-squares formulation leads to a variational unconstrained minimization problem. 
Specifically, the Euler-Lagrange equation is derived and conveniently rearranged so 
that terms associated to the variation of each independent variable are combined. 
This procedure is quite straightforward and extensive so it is not explicitly included. 

 
In general, arbitrary weights may be assigned to each of the residuals in the least-

squares functional. In fact, the implemented layerwise mixed least-squares model 
uses weights, chosen to non-dimensionalize the equations, in the interest of equally 
minimizing all residuals. 
 
2.4 Finite Element Model 
 
The subsequent finite element model is developed from the derived Euler-Lagrange 
equation, written for a representative finite element of the multilayered plate, Ωe×h. 
The independent variables and corresponding variations are then substituted in view 
of the assumed layerwise variable description given by Equation (1), along with the 
following two-dimensional approximations: 
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The functions ( )yxju ,ψ ,…, ( )yx

jxy
,γψ  are two-dimensional high-order 0C  nodal 

basis functions and un ,….,
xy

nγ  the number of nodes in the in-plane finite element. 

For a p-order in-plane rectangular element, the number of nodes is set ( )21+= pn . 
As a result, the variables nodal values k

jsu ,…, k
jsxyγ  correspond to the j-in-plane point 

location at the s-plane of the k-layer. 
Since earlier works on least-squares formulations [21–24] show high-order basis 

functions as best to truly minimize the least-squares functional, the two-dimensional 
basis functions adopted are 0C  interpolant polynomials of Gauss-Lobatto-Legendre 
quadrature points, which are most suitable for high-order expansions [25]. The 
tensor product property is preserved, meaning that two-dimensional basis functions 
are efficiently derived from one-dimensional basis functions. In fact, the assumed 
expansions in the thickness direction of each k-layer also use these one-dimensional 
basis functions. For clearness, one- and two-dimensional basis functions are denoted 
as φ and ψ, respectively. Specifically, the one-dimensional 0C  basis functions of 
order 1−= mp  are written using the p-order Legendre polynomial 1−mP , as follows: 
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( ) ( )( )iim
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 (13) 

 
where iξ  are the m nodes coordinates given by the roots of ( ) ( ) 01 1

2 =′− − ξξ mP , in 
the interval [-1,1], matching Gauss-Lobatto-Legendre m quadrature points. 

 
Considering the aforementioned substitutions of Equations (1) and (12) into the 

Euler-Lagrange equation derived from the functional in Equation (11), the layerwise 
mixed least-squares finite element model is obtained. It should be noted that the sum 
in Equation (11), to take into account the contribution of each layer in the element 
Ωe×h, means in fact the assembly from layer to multilayer. Hence, given the number 
of nodes through the layer thickness m, the multilayer plate total number of nodes 
through the thickness becomes ( ) 11 +×− Nm . To better distinguish between layer 
and multilayer, the dummy index s used at the layer level becomes s  at multilayer 
level. Once all substitutions are carried out, the layerwise mixed least-squares model 
for static analysis of multilayered composite plates, ultimately takes the following 
matrix form: 
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where a Kronecker product is used between the result of the integration in Ωe and 
the result of the integration in h, as generally specified below: 
 
 cd
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srij KKK ⊗= , c
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ri FFF ⊗=  (15) 

 
Furthermore, the layerwise mixed least-squares model surely gives a symmetric 

positive-definite system of linear equations in the end. In fact, symmetry of the 
stiffness matrix is specified in Equation (14), in view of the transpose property over 
the Kronecker product, as generally given: 
 
 ( ) ( ) ( ) dc

srij
cd

rsji
cd
rs

cd
ji

tcd
sr

tcd
ij

tcd
srij KKKKKKK ==⊗=⊗=  (16) 

 
The integral expressions of all submatrices ab

srijK  and subvectors a
riF  in Equation 

(14) are given in the Report Project [26]. To be clear, it should be underlined that the 
present model uses full integration in the numerical evaluation of all integrals, since 
earlier works show that mixed least-squares models are insensitive to shear-locking 
[21–24]. Also, once all independent variables are solved, the in-plane stresses and 
transverse strains may be post-computed using Equations (6a) and (6b), respectively. 

 
2.4.1 Boundary Conditions 
 
In the static analysis of multilayered composite plates, with a transverse load ( )yxq ,  
applied on the plate top surface, boundary conditions on the transverse stresses are 
generally considered on the top and bottom plate surfaces. Since the present model 
uses transverse stresses as independent variables, in a layerwise variable description, 
these boundary conditions can be imposed exactly as follows: 
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In addition, boundary conditions adequate to the plate edges support type need to 

be considered concurrently. According to simply supported, clamped or free support 
types, boundary conditions on displacements and/or in-plane stresses are generally 
considered. Displacements boundary conditions can be directly imposed, given that 
they are independent variables of the present model, but in-plane stresses boundary 
conditions cannot. Nevertheless, least-squares formulations allow the introduction of 
additional residuals in the functional, corresponding to boundary conditions imposed 
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in a least-squares sense. In this case, Equation (6a) is used to write the in-plane 
stresses in terms of the model independent variables, so that additional residuals can 
be included in the least-squares functional. For instance the boundary condition, 
 
 0at,0 xxk

xx ==σ  (18) 
 
imposed in a least-squares sense corresponds to the following additional term in the 
functional J: 
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Ultimately, the present model static analysis of multilayered composite plates 

uses boundary conditions on the top and bottom plate surfaces, as given by Equation 
(17), and boundary conditions for the multilayer plate edges, consistent with simply 
supported, clamped or free support types, which are imposed exactly as follows: 
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3  Numerical Examples 
 
Numerical examples are now presented to demonstrate the predictive capabilities of 
the developed layerwise mixed least-squares finite element model. The assessment 
of the present model is mainly based on a thorough and complete comparison with 
three-dimensional elasticity solutions by Pagano and Hatfield [8, 9]. Actually, the 
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methodology described by Pagano [8] to derive exact three-dimensional solutions 
was implemented by the authors using symbolic computing, so that solutions could 
be presented with the desired precision, some even not available in literature. Since 
three-dimensional elasticity solutions are only possible for a few cases, with simple 
geometries and specific stacking sequences, the numerical examples shown are 
within that scope. In addition, further assessment of the present model is facilitated 
by considering some results from other finite element models available in literature, 
above all, the layerwise mixed weak form model by Carrera as reported in [15]. 

 
The numerical examples focus on a benchmark problem of static analysis of the 

simply supported square multilayered composite plate (0/90/0), with a bi-sinusoidal 
transverse load of intensity 0q  applied on the plate top surface. The outer layers total 
thickness equals the central layer thickness, so the more intuitive form (0/90/90/0) is 
used henceforth. A range of side-to-thickness ratios is considered, including very 
thick, moderately thick, thin and very thin plates, 500,100,50,20,10,4,2=ha . The 
material properties used for all layers are the same, as follows: 
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To facilitate assessment, all results are in a non-dimensionalized form, as shown: 
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The following results of the layerwise mixed least-squares model used at all times 

a mesh of 3×3 in-plane elements of 4th-order basis functions ( )yx,ψ  and 3 layers of 
3rd-order basis functions ( )zφ . This mesh seemed sufficient to achieve comparable 
results with the three-dimensional solutions as well as other finite element results 
available in literature. However, in truth, it would be interesting to refine this mesh 
even further, layerwise, whether by adding more (numerical) layers or by increasing 
the z-expansion order. This is intended for the near future, but to this date those 
results are not yet available. This is due to the increase in memory requirements, 
which involved processing in a different platform. 

 
3.1 Composite Plate (0/90/90/0) Static Analysis 
 
An initial overview of the present model accuracy compared to other finite element 
models, in the prediction of the transverse displacement, is summarized in Table 1, 
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considering 100,20,10,4=ha , along with the exact three-dimensional solutions by 
Pagano and Hatfield [8, 9]. Specifically, the results presented by other finite element 
models are available in the complete paper by Carrera [15], dedicated to numerical 
evaluations of multilayered plate elements. Among several finite element models 
developed by Carrera for evaluation, only the best is included here for comparison, 
which corresponds to a layerwise mixed weak form model of 4th-order z-expansion 
in the layer thickness, henceforth denoted as Carrera model. The other finite element 
models also included are designated by the same acronyms as in Carrera [15], to be 
clear. Those results are in fact from Reddy (R-H) [27], Di and Ramm (D&R) [28] 
and Liew, Han and Xiao (LH&X) [29].  
 

Model a/h = 4 a/h = 10 a/h = 20 a/h = 100 

3D 1.93672 0.73698 0.51295 0.43460 
present 1.93317 0.73662 0.51291 0.43459 
Carrera 1.9374 0.7376 0.5133 0.4348 

R-H 1.8937 0.7147 0.5060 0.4343 
D&R 1.9530 0.7377 0.5122 0.4333 

LH&X 1.7095 0.6627 0.4912 0.4337 
 

Table 1: Comparison of transverse displacement ( )0,, 22
aaw  by the present model 

with other available models for the composite plate (0/90/90/0). 
 

In addition, a complete assessment of the present layerwise mixed least-squares 
model results for the static analysis of the multilayered composite plate (0/90/90/0), 
considering 500,100,50,20,10,4,2=ha , is given in Table 2 by comparison with 
three-dimensional solutions [8, 9]. Carrera model results are also included to better 
contrast this other layerwise mixed model based on a weak formulation, instead. 
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a/h = 2       
3D 1.38841 0.83508 -0.08630 0.15300 0.29458 5.07450 

 -0.91165 -0.79465 0.06732    
present 1.11045 0.52324 -0.08630 0.15396 0.31550 5.07759 

 -0.74610 -0.58870 0.06697    
Carrera 1.4405 0.8478 -0.0911 0.1601 0.3105 5.0800 

 -0.9444 -0.8116 0.0710    
a/h = 4       

3D 0.72026 0.66255 -0.04666 0.21933 0.29152 1.93672 
 -0.68434 -0.66551 0.04581    

present 0.67552 0.58800 -0.04648 0.21944 0.29978 1.93317 
 -0.64348 -0.60045 0.04563    

Carrera 0.7456 0.6897 -0.0493 0.2294 0.3148 1.9374 
 -0.7093 -0.6937 0.0484    

Continued 
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Model ( )222 ,, haa
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a/h = 10       
3D 0.55861 0.40095 -0.02750 0.30137 0.19595 0.73698 

 -0.55909 -0.40257 0.02764    
present 0.55501 0.39398 -0.02766 0.30135 0.19721 0.73662 

 -0.55552 -0.39576 0.02780    
Carrera 0.5909 0.4225 -0.0286 0.3073 0.1607 0.7376 

 -05915 -0.4244 0.0287    
a/h = 20       

3D 0.54282 0.30835 -0.02302 0.32816 0.15562 0.51295 
 -0.54320 -0.30880 0.02307    

present 0.54239 0.30720 -0.02318 0.32819 0.15580 0.51291 
 -0.54278 -0.30766 0.02323    

Carrera 0.5732 0.3239 -0.0239 0.3592 0.1697 0.5133 
 -0.5741 -0.3247 0.0240    

a/h = 50       
3D 0.53931 0.27593 -0.02157 0.33740 0.14115 0.44461 

 -0.53938 -0.27600 0.02158    
present 0.53934 0.27590 -0.02164 0.33755 0.14056 0.44461 

 -0.53941 -0.27597 0.02165    
Carrera 0.5673 0.2894 -0.0225 0.3665 0.1533 0.4449 

 -0.5674 -0.2895 0.0225    
a/h = 100       

3D 0.53885 0.27101 -0.02135 0.33880 0.13894 0.43460 
 -0.53887 -0.27103 0.02136    

present 0.53891 0.27103 -0.02139 0.33909 0.13803 0.43459 
 -0.53893 -0.27104 0.02139    

Carrera 0.5655 0.2841 -0.0224 0.3665 0.1505 0.4348 
 -0.5655 -0.2841 0.0224    

a/h = 500       
3D 0.53870 0.26941 -0.02128 0.33925 0.13823 0.43138 

 -0.53870 -0.26942 0.02128    
present 0.53573 0.26819 -0.02119 0.33792 0.13791 0.42900 

 -0.53573 -0.26819 0.02119    
 

Table 2: Comparison of results by the present model with 3D solutions and  
Carrera model for the composite plate (0/90/90/0). 

 
 

The initial comparative study shown in the former Table 1 is mostly significant in 
demonstrating that both layerwise mixed models, the present and Carrera, are the 
most accurately efficient models in predicting the transverse displacement for the 
static analysis of the multilayered composite plate (0/90/90/0), in the entire range of 
side-to-thickness ratios considered 100,...,4=ha , although all models give in fact 
rather acceptable results. The more comprehensive study in Table 2 provides a better 
understanding of the present model predictive capabilities. Basically, examination of 
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Table 2 shows that the present layerwise mixed least-squares model is able to attain 
quite accurate results in very good agreement with the corresponding exact three-
dimensional solutions. More specifically, for moderately thick to very thin plates 

500,...,10=ha , the level of accuracy of the present model in the prediction of all 
variables is really quite remarkable, in some instances, nearly coincident with three-
dimensional solutions. This fact also demonstrates that the present layerwise mixed 
least-squares model, using full integration, appears to be insensitive to shear-locking 
problems, even when analysing very thin plates, with 500,100=ha . For very thick 
plates 4,2=ha , the level of accuracy of the present model in the prediction of most 
variables is still quite good compared to three-dimensional solutions, apart from the 
predictions of the in-plane normal stresses, which appear not as accurate. Actually, 
Carrera model is only able to achieve more accurate results than the present model 
precisely in the predicted in-plane normal stresses for 4,2=ha , and just slightly in 
the predicted transverse displacement for 4=ha . At this point, it is convenient to 
underline that the present model uses the same mesh for all the different cases of 
side-to-thickness ratios, namely, 3×3 in-plane elements of 4th-order and 3 layers of 
3rd-order. Although this mesh proved to be sufficient for moderately thick to very 
thin plates, reaching very good predictions for all variables, it is understandable that 
this mesh may need a further refinement, layerwise, in order to be able to attain the 
same level of accuracy in much thicker plates. In contrast, Carrera model results are 
obtained using a mesh of 4×4 in-plane elements of 2nd-order and a non-specified 
number of (numerical) layers of 4th-order, according to Carrera [15]. Hence, the two 
meshes are fairly comparable in-plane, but Carrera model is already more refined 
layerwise. Therefore, it cannot really be answered (to this date) whether the present 
model using the same 4th-order z-expansion, would be able to achieve (at least) as 
much accurate predictions as Carrera model in the few aforementioned instances 
concerning very thick plates. However, it can be ascertained that in all remaining 
instances the present model is able to attain quite accurate results in very good 
agreement with three-dimensional solutions, even more than Carrera model, in spite 
of a less demanding layerwise description. Furthermore, Carrera model results as 
shown, needed an extensive use of reduced/selective integration techniques to avoid 
transverse shear-locking, which is clearly stated in Carrera [15], whereas the present 
layerwise mixed least-squares model requires no such efforts. 

To conclude the assessment of the present model predictive capabilities, Figures 
2–4 show the predicted distributions through the plate thickness for the variables u , 

xxσ  and xzσ , considering thick, moderately thick and thin plates 100,10,4=ha , 
alongside the three-dimensional solutions. These plots combined with the preceding 
tables provide a fairly detailed description of the composite plate (0/90/90/0) static 
analysis. Altogether, Figures 2–4 corroborate with the previous discussion. 

In all figures, both three-dimensional solutions and the present model predicted 
distributions are in fact represented using the corresponding symbolic functions. For 
the layerwise mixed least-squares model this means that the plots are based on the 
actual one-dimensional 0C basis functions in the layer thickness combined with the 
variables nodal values, as marked. 
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Figure 2: In-plane displacement ( )2,0 au  through the thickness  
for the composite plate (0/90/90/0). 

 

 
 

Figure 3: In-plane normal stress ( )22 , aa
xxσ  through the thickness  

for the composite plate (0/90/90/0). 
 

 
 

Figure 4: Transverse shear stress ( )2,0 a
xzσ  through the thickness  

for the composite plate (0/90/90/0). 
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4  Concluding Remarks 
 
A layerwise finite element model is developed in a mixed least-squares formulation 
for static analysis of multilayered composite plates. An axiomatic type approach is 
used, with a layerwise variable description of displacements, transverse stresses and 
in-plane strains, in a truly (partial) mixed formulation. Since multilayered composite 
structures may exhibit complicating effects introduced by anisotropic behaviour, 
such as high transverse deformability, zig-zag effects and interlaminar continuity, a 
layerwise model is really required to be able to accurately capture such effects. In 
fact, to completely and a priori fulfil 0

zC  requirements, a mixed formulation is also 
preferred. Furthermore, the mixed least-squares formulation is adopted given that it 
leads to a variational unconstrained minimization problem, where the finite element 
approximating spaces can be chosen independently, as opposed to mixed weak form 
models. Additionally, mixed least-squares models as shown by earlier works [21–
24] appear to be insensitive to shear-locking, which is a common problem on weak 
form models, whether displacement-based or mixed. 

Numerical examples are then presented to show the predictive capabilities of the 
developed layerwise mixed least-squares finite element model. The assessment of 
the present model results is primarily based on a comprehensive comparison with 
the three-dimensional elasticity solutions by Pagano and Hatfield [8, 9]. Further 
assessment is also facilitated by comparison with other finite element results, above 
all, the layerwise mixed weak form model by Carrera [15]. The numerical examples 
focus on the static analysis of the simply supported square multilayered composite 
plate (0/90/90/0), under a bi-sinusoidal transverse load, with a range of side-to-
thickness ratios, including very thick, moderately thick, thin and very thin plates, 

500,100,50,20,10,4,2=ha . Altogether, it is shown that the present model is able 
to obtain quite accurate results in very good agreement with the three-dimensional 
solutions. Specifically, for moderately thick to very thin plates 500,...,10=ha , the 
present model achieves highly accurate results for all variables, in fact better than 
Carrera model, even though the z-expansion order in the layer thickness is of 3rd-
order in the present model and 4th-order in Carrera model. For very thick plates 

4,2=ha , the present model also reaches rather accurate results, but less so for the 
in-plane normal stresses that appear not as accurate. This is precisely where Carrera 
model provides better results, which suggests that the present model might benefit 
from a further refinement, layerwise, whether by adding more (numerical) layers or 
by increasing the z-expansion order, in order to be able to achieve more accurate 
results in this case. In effect, such results are expected for the near future. Finally, it 
is important to underline that unlike Carrera model, the present layerwise mixed 
least-squares model is shown to be insensitive to shear-locking altogether. 
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