Computational & Technology Resources
an online resource for computational,
engineering & technology publications
Civil-Comp Conferences
ISSN 2753-3239
CCC: 6
PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON CIVIL, STRUCTURAL AND ENVIRONMENTAL ENGINEERING COMPUTING
Edited by: P. Ivanyi, J. Kruis and B.H.V. Topping
Paper 10.4

An exact stiffness matrix for buckling analysis of an axial-flexural coupled column including shear deformation

J.R. Banerjee

School of Science and Technology, City, University of London, London, United Kingdom

Full Bibliographic Reference for this paper
J.R. Banerjee, "An exact stiffness matrix for buckling analysis of an axial-flexural coupled column including shear deformation", in P. Ivanyi, J. Kruis, B.H.V. Topping, (Editors), "Proceedings of the Seventeenth International Conference on Civil, Structural and Environmental Engineering Computing", Civil-Comp Press, Edinburgh, UK, Online volume: CCC 6, Paper 10.4, 2023, doi:10.4203/ccc.6.10.4
Keywords: column, axial-flexural buckling, exact stiffness matrix, critical buckling load, Wittrick-Williams algorithm.

Abstract
Flexural-torsional buckling analysis of columns is widely covered in the literature. By contrast, there are hardly any corresponding publications on axial-flexural buckling. This is because there appears to be a commonly held view that in a column, the axial deformation is perceived to be small and therefore its coupling with the flexure can be neglected when predicting its critical buckling load. This paper counters this view by focusing on the buckling behaviour of axial-flexural coupled columns. The usefulness for this research stems from the fact that there are many practical columns which have cross-sections that exhibit axial-flexural coupling as opposed to flexural-torsional coupling, and thus, the axial-flexural coupling is likely to have significant effects on buckling behaviour. The problem does not appear to have been adequately addressed by investigators. Starting from the derivation of the governing differential equation with the inclusion of shear deformation, the stiffness matrix of an axial-flexural coupled column is derived in an exact sense and subsequently applied through the implementation of the Wittrick-Williams algorithm as solution technique to determine the critical buckling load of the column for various boundary conditions. The results are validated by an alternative exact method. Finally. some conclusions are drawn.

download the full-text of this paper (PDF, 10 pages, 352 Kb)

go to the previous paper
go to the next paper
return to the table of contents
return to the volume description