Computational & Technology Resources
an online resource for computational,
engineering & technology publications
Civil-Comp Conferences
ISSN 2753-3239
CCC: 1
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON RAILWAY TECHNOLOGY: RESEARCH, DEVELOPMENT AND MAINTENANCE
Edited by: J. Pombo
Paper 23.17

A Robustness Analysis of Long Distance Train Crew Schedules in Germany

R. Borndörfer, B. Grimm and S. Schade

Zuse Institute Berlin, Berlin, Germany

Full Bibliographic Reference for this paper
R. Borndörfer, B. Grimm, S. Schade, "A Robustness Analysis of Long Distance Train Crew Schedules in Germany", in J. Pombo, (Editor), "Proceedings of the Fifth International Conference on Railway Technology: Research, Development and Maintenance", Civil-Comp Press, Edinburgh, UK, Online volume: CCC 1, Paper 23.17, 2022, doi:10.4203/ccc.1.23.17
Keywords: railway, crew scheduling, robustness, performance indicator.

Abstract
Nowadays railway networks are highly complex and often very fragile systems. A wide variety of individual operations that influence each other have to go hand in hand to end up with a smoothly and efficiently running system. Many of these operations suffer from uncertainty as trains could be delayed, the signaling system be disrupted or scheduled crews could be ill. Usually these opartions could be organized hierarchically from long term strategical decisions to real time decision management. Each stage in the hierarchy defines a different mathematical optimization problem, which is solved sequentially. At every stage the knowledge about preceding or succeeding planning stages may vary and also the interaction between two stages in this chain of problems may vary from almost no interaction to highly dependent situations. This paper deals with a topic that is an example for the latter case, namely the interaction between vehicle schedules, vehicle punctuality, and crew schedules. To reduce the number of potential rescheduling actions we developed a software tool in cooperation with our practical partner DB Fernverkehr AG (DBF) to predict a certain set of critical crew schedules. This tool evaluates, predicts, and determines "bottlenecks" in the crew schedule in the sense of potentially required rescheduling actions due to likely delays. The approach was tested on real life crew and train timetable data of DBF and can be regarded as the computation of key performance indicators, which is often desired. For our experiments we had access to the operated timetable and crew schedule of DBF for periods of two and six weeks in 2019.

This paper is not available due to Editorial and Copyright reasons.

go to the previous paper
go to the next paper
return to the table of contents
return to the volume description