Computational & Technology Resources
an online resource for computational,
engineering & technology publications |
|
Civil-Comp Conferences
ISSN 2753-3239 CCC: 2
PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY Edited by: B.H.V. Topping and P. Iványi
Paper 7.4
Analysis of Object Detection Datasets for Machine Learning with Small and Tiny Objects L. Fichtel, D. Erbacher, L. Heller, A. Fruhwald, L. Hösch and C. Bachmeir
University of Applied Sciences Würzburg-Schweinfurt, Germany L. Fichtel, D. Erbacher, L. Heller, A. Fruhwald, L. Hösch, C. Bachmeir, "Analysis of Object Detection Datasets for Machine
Learning with Small and Tiny Objects", in B.H.V. Topping, P. Iványi, (Editors), "Proceedings of the Eleventh International Conference on Engineering Computational Technology", Civil-Comp Press, Edinburgh, UK,
Online volume: CCC 2, Paper 7.4, 2022, doi:10.4203/ccc.2.7.4
Keywords: machine learning, damage identification, object detection, inspection, tiny objects, small objects, maintenance, dataset.
Abstract
Deep Learning models are trained to detect humans, cars, and other large objects
which are centered in the images. The same models struggle with detecting small and
tiny objects because of architecture design decisions that reduce the entropy of small
and tiny objects during training. These small and tiny objects are essential for damage
identification and maintenance including inspection and documentation of aeroplanes,
constructions, offshore structures, and forests. Our work defines the terms tiny and
small in context of deep learning models to evaluate possible approaches to resolve
the issue of low accuracy in detecting these objects. We analyse the currently applied
common datasets Common Objects in Context, ImageNet and Tiny Object Detection
Challenge dataset. In addition we compare these datasets and present the differences
in terms of object instance size. The COCO dataset, ImageNet dataset and
TinyObjects dataset are analysed regarding size categorization and relative object
size. The results show the large differences between the size ratios of the three chosen
datasets, with ImageNet having by far the largest object instances, COCO being in the
middle and TinyObjects having the smallest objects as its name would indicate. Since
the objects themselves are larger in terms of total pixel width and height, they
therefore make up a bigger percentage on the superordinate picture. Looking at the
size categories of the COCO dataset and our extension of the tiny and very small
category, the results confirm the size hierarchy of the datasets. With ImageNet having
most of its objects in the large category, COCO respectively in the medium category
and TinyObjects in the very small category. By taking these results into account, the reader is able to choose a fitting dataset for their tasks.We expect our analysis to help
and improve future research in the area of small and tiny object detection.
download the full-text of this paper (PDF, 6 pages, 190 Kb)
go to the previous paper |
|