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Abstract

Topology optimization is a widespread and robust process to generate structures sup-
porting a given loading state while subject to minimum volume and maximum stiffness
specifications. This traditional framework, embodied by techniques such as SIMP or
ESO, is lacking in some aspects. Firstly, loading conditions are assumed static, mean-
ing the structure will only be optimized for that very specific layout, unable to adapt
to any eventualities, e.g. vibrations, unexpected (impacts) or alternating loads. Sec-
ondly, loads are considered fixed in position, direction and modulus, which is often
not the case in industrial applications. Loads can be misplaced, move and vary their
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direction and modulus under certain conditions, including those linked to nonlinear ef-
fects (buckling, creep, fatigue). Lastly, as a direct consequence of the previous point,
damage considerations are not usually taken into account. This absence misrepresents
results as they do not reflect wear and tear over time (4D optimization). In this article,
a novel attempt at solving these issues is presented. Uncertain and pseudo-dynamic
loading is introduced and its long-term effects captured by a damage parameter based
on the elastic energy at each step following a reinforced SIMP scheme. Future ramifi-
cations of this work are pondered, especially regarding metamaterial inverse design.

Keywords: topology optimization, fatigue damage, finite element method, multi-
objective optimization, continuous media, probabilistic mechanics, metamaterials

1 Introduction

Since the dawn of the Industrial Revolution, structural design has focused on meet-
ing both mechanical (stiffness, deformation) and design/economic constraints (weight
minimization, i.e. material layout optimization). A work-minimizing solution for
frame (discrete) structures was presented by Michell [1], perfected for flexural meshes
by Rozvany [2] and formulated by him and Prager [3]; and ultimately conveyed as a
form of material density distribution over a continuous dominion by Bendsøe and
Kikuchi [4,5].

Topology optimization (TO) techniques define a mathematically robust framework
by which material is distributed throughout a spatial dominion via minimization of
elastic strain deformation (compliance, c = uKu) subjected to a volume fraction re-
quirement f = Vf/V0. It is an optimization process inasmuch as it improves the ma-
terial layout according to the aforementioned constraints (compliance, light-weight);
and topological as it changes the genus of the prototype, adding non-disconnecting
cuttings along non-intersecting closed simple curves, i.e. ”holes”. Shape optimization
can also be performed on the generated material regions as a refinement step, with no
topological implications (genus remains unaltered) [6]. While closely related, these
two processes (shape and topology optimization) are conceptually distinct [7,8]. Most
common TO methods are solid isotropic microstructure/material penalization (SIMP)
[5,9] - and (bi-directional) evolutionary structural optimization ((B)ESO).

Considering a plate with normalized thickness ρ, SIMP aims for a binary material
(black, ρ = 1) versus void (white, ρ = 0) solution, based on a power rule with penal-
ization p. Typically, intermediate states (grey, 0 < ρ < 1) require more finely-tuned
elimination to avoid checkerboard patterns [10], mesh dependence and convergence
problems due to nonexistence of the solution, or ill-defined gradient searching for local
minima instead of global ones. These issues can be alleviated via filtering, relaxation
and continuation methods, respectively [11].

The ESO method, also known as sequential element rejections and admissions
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(SERA), requires computing a representative parameter value (e.g.: von Mises’ stress),
eliminating the elements presenting its lowest value in each iteration, that is, setting
them from full to void. The bi-directional version [12] adds extra elements near to
high-value already existing ones. (B)ESO can yield better results if a global optimum
is found from within a large number of trials [13]. This last method has been criti-
cized for its completely heuristic nature and its questionable efficiency, since it does
not guarantee an optimal solution - which could be singular [14] - but a (hopefully)
near-optimal one. Similar techniques are based on stochastic procedures such as ge-
netic algorithms, who keep the most robust designs out of a pool that shrinks with
every evaluation, imitating natural selection (hence the name). They have been used
extensively for trusses and lattice structures [14,15].

Other approaches based on homogenization, such as near-optimal microstructure
(NOM) [4] or optimal microstructures with penalization (OMP) [7], are demonstrably
under-performing due to insufficient penalization and their excessive complexity -
they require multiple variables per element [16]. None of these methods takes into
account mechanical properties explicitly, an issue some new approaches, such as the
updated properties model (UPM) [17] have successfully addressed to some degree.

However, traditional TO studies are usually subjected to static loading, a rather de-
terministic framework where neither forces nor any other boundary conditions change
over time in modulus or position. This hinders their generalization and applicabil-
ity under dynamic loading in service and the inherent uncertainty in loading condi-
tions (accentuated by vibration and wear, also ignored by most optimization schemes).
Some inverse design proposals for discrete lattices exist [18], although bibliography
tackling the continuum remains scarce. The modeller must also bear in mind that not
all loads are applied at the same time, nor with the same frequency. A common exam-
ple is that of an unexpected impact load: an eventuality which can still have a great
impact on the structure’s resistance, perhaps to the point of compromising it (failure).
Reliability/performance-based topology optimization (RBTO/PBTO) and inverse op-
timum safety factors (IOSF) [19,20] strive for a more flexible, custom, probabilistic
approach, compatible with multi-objective optimization (multiaxial, dynamic loading
with damage implications) and not as vulnerable to printing irregularities [21].

The inclusion of damage constraints in the optimization process is still far from
ubiquitous, since TO is conceived primarily as an inverse design tool, regardless of
maintenance concerns. Whereas static loading obeys static failure criteria, easily im-
plementable through stress-based formulations (Rankine, Saint-Venant, Tresca, von
Mises, etc.); dynamic loads imply fatigue damage, which can be parametrized by
stress (Wöller’s diagram), strain (e.g., Smith-Watson-Topper’s model) and/or energy
criteria (e.g., fracture mechanics) integrated over time. Arguably, the latter come as
more general and deeply naturally intertwined with TO - minimizing compliance, i.e.
elastic strain energy. Some authors consider total strain energy (elastic and plastic) a
parameter for cumulative fatigue damage in itself - including explicit fracture consid-
erations (e.g., crack growth) [22,23], even suitable for damage prediction [24]. Other
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important additions of TO involve realistic material stress constraints [25], efficient
FE2 approaches [26] and/or correctly separated multi-phase solutions [27].

After briefly introducing the state of the art in this first section, the proposed
methodology will be presented in Section 2. Some preliminary results shall be an-
alyzed in Section 3, following some conclusions and proposals in the fourth and last
section.

2 Methodology

This article is based upon Andreassen et al.’s [28] 88-line adaptation of a famous
previous version by Sigmund [29], whose initial SIMP approach was improved in
computational efficiency (by a factor of 100), as well as numerical stability (setting a
minimum non-null void Young’s modulus Emin) and convergence (avoiding checker-
board patterns by density - and volume - filtering). In the present article, uncertainty
was introduced in the load vector F , both in modulus and position, varying them ac-
cording to a normal distribution. Additionally, two subprocesses were included in
the main iteration loop. The innermost one considers every cycle j under a random-
ized approximation of a canonical load Fi, accumulating contributions cj computed
directly as a user-defined damage function γ involving ce. The outer one alternates i
loads included in F , accumulating their respective compliance contributions ci. Such
compliance contributions are averaged outwards at the cycle (cj), load (ci) and iter-
ation level (c) through the damage parameter γ, which is computed locally for each
cell.

Three damage criteria are considered. The first of them is an energy criterion,
computing a damage parameter γ = ∆Wt containing a cyclic contribution (Nf ) and a
tensional contribution (C):

γ = ∆Wt = κNα
f + C = κNα

f +
1

2E
σ2
f (1)

where κ and α are adjustable parameters, Nf is the number of loading cycles, E is the
base material’s Young modulus and σf is the tension damage threshold.

The second criterion considers the 2D Finite Element structure’s stress state, pe-
nalizing the cell with the highest principal stress ε1 by a factor P multiplying the
damage parameter ∆Wt so that γ = P∆Wt. If such maximum corresponds to trac-
tion, the resulting structure will be reinforced against such loadings, which is useful
for cement-like materials withstanding little or no tension. On the contrary, should
compression be maximum, penalization will protect the optimized architecture from
buckling and other issues arising in metals and composites alike.

A third criterion could include the effects of the prototype’s printing direction, as
in [30,31], which of course distorts the original (assumed) isotropy of the optimized
structure. This effect can be included by multiplying ∆Wt times the projection proj
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of such printing direction rprint on the principal direction r1:

γ = ∆Wtproj( ⃗rprint, r⃗1) = ∆Wt(1 + β( ⃗rprint · r⃗1)) (2)

where β is a tuneable intensifying parameter. For that, the strain tensor ε is com-
puted from the displacements u and B for 2D square elements:
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Which, assuming unitary side and centered nodes, becomes easy to compute if
linear shape functions Ni(x, y) are applied.

Lastly, a forth criterion could be directly von Mises’ equivalent stress, account-
ing for the distortion energy. First, the stress tensor is computed from Lamé-Hooke
equations:

σ = λtr(ε) + 2µε (4)

Which allows the calculation of von Mises’ stress for the 2D case as the damage
parameter:

γ = σvM =
√
σ2
xx + σ2

yy − σxxσyy + 3τ 2xy =
√

σ2
1 + σ2

2 − σ1σ2 (5)

These criteria are tailored for specific purposes (damage, stress, printing parameters
and distortion), but they can be combined when needed.

3 Results

Different boundary conditions were examined via various loads and criteria, mainly a
cantilever beam and a 3 point bending test. The cantilever beam was exposed to mul-
tiaxial loading: two static horizontal loads (5 N) were applied each 25 loading cycles,
together with two alternating vertical loads around the upper tip and bottom middle,
varying in modulus and position (within a 600x200 lattice) according to two different
normal distributions N (1, 0.5) and N (550, 50). A penalization factor p = 3 and a
filter radius rmin = 2 were considered. When compared to the vanilla configuration
(top88 by [28]), the proposed probabilistic approach offers a quite different topology
- as seen in Figure 1 -, more resistant to uncertainty as it spreads in several direc-
tions in a more organic and continuous manner, with more reinforcement as adjusting
parameters Kf , σf , α in criterion 1 are refined.

The 3-point bending test is subjected to a central downward load with modulus
given by N (1, 0.3). The objective is now to ponder the effects of each aforementioned
damage criteria individually.
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Figure 1: Multi-load case, position and modulus uncertainty: vanilla (up), configura-
tion 1 with κ = σf = 10−5 and α = 9 · 10−2 (middle) and configuration 2
with κ = 5 · 10−5, σf = 5 · 10−2 and α = 9 · 10−3 (bottom). Iteration 100

This comparison (Figure 2) shows how penalizing certain tensional states (trac-
tion/compression) reinforces the parts subjected to such conditions. Analogously, ma-
terial along the printing direction will be prominent and broadened. The last criterion
provides a minimum-material version of the isotropic case with homogeneous distor-
tion energy (von Mises).

Units have been deliberately left undeclared, since linear elasticity is considered
throughout the article and so scale is up to the designer, who will obtain the same
results as long as the proportions between size and loads are kept. Experimental testing
will be performed to evaluate the influence of the printing conditions on the designed
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Figure 2: 3-point bending test with 10-element wide supports on the lower corners
and configuration 3 (κ = 5 · 10−7, σf = 5 · 10−3 and α = −9 · 10−5).
Iteration 200 for the isotropic criterion (first), the tensional one penalizing
compression (second) and traction (third) with P = 10000, printing angles
of 0º (fourth) and 90º (fifth) with β = 500 and implementing von Mises’
equivalent stress as a damage parameter (sixth). Size 1000x200, p = 5.
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prototypes.

4 Concluding remarks

In the light of the obtained results, this method has proven its robustness for inverse
design, adding damage implications to the vanilla configuration [29,28]. This is co-
herent with the initial goal of providing uncertainty- and damage-proof alterantives
to traditional deterministic designs, able to withstand multi-objective optimization
(multiaxial, uncertain load, frequency and position) while offering different refining
damage criteria: tensional (compression, tension, von Mises’ equivalent stress) and
operational (horizontal and vertical printing directions).

This upgrade opens up a plethora of new, sturdy, inverse designs. Remarkably,
topology and shape optimization can be leveraged for the design and improvement of
architectured materials, also known as metamaterials. Metamaterials (from ”meta”:
beyond) are composed of micro-lattices tailored to showcase macro properties and
behaviours unheard of in bulk materials (continuous media).

According to their field of application, metamaterials include 4 main types [32]:
electromagnetic - hyperlenses [33], Left-Handed Materials with a negative refraction
index [34,35] and optical cloaks [36] -, thermal [37], acoustic - absorption [38], cloaks
[39] - and mechanical - auxetic [40] - presenting a zero [41], negative [42] or even
tunable Poisson’s ratio [43,44] -. Some metamaterials even combine several areas,
such as mechanical and thermal [45] or acoustic and mechanical [46]. The finite
element method (FEM) [47,48], as well as Model Order Reduction (MOR) [49,50]
and Machine Learning (ML) techniques - mainly Convolutional [51], Recurrent [52]
and Graph Neural Networks [53,54] - have been widely used for their design and
characterization [55-58], including inverse design [59].

Different specific lattice-like continuum architectures (periodic or not) generated
via TO allow for a discrete, tailored behaviour, like composites, except with lighter
weight and more design flexibility overall. Some authors consider metamaterials a
subset of multi-objective composites in which one of the phases is void [60]. One
common trait of both is functional grading, i.e. different properties for different needs
along sections of the prototype. Greater precision (down to one micron [61]) and
lesser cost of manufacturing techniques [62] - mainly additive, i.e. 3D printing [63]
- have ushered the study of new, exponentially more complex structural designs, with
much needed multi-scale (hierarchical) implications [64]. Conversely, a sufficiently
dense network could emulate the behaviour of a continuous medium if needed, only
with a minimum weight, as trabecular bone does organically.

Focusing on mechanical metamaterials, they share some design constraints with
macroscopic structures, depending on their geometry and loading cases, namely fa-
tigue [65,66] - extensively studied for additively manufactured metamaterials [67-71],
buckling [72] -although it can be leveraged [73] - and creep [74,75]. Topological op-
timization aims to improve the (meta)material’s response to such boundary conditions
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by iteratively changing its geometry, namely by scrapping material where it is not en-
tirely necessary to endure a given loading scenario. It can also be used to alleviate the
aforementioned problems.

Since a metamaterial already largely consists of void, the TO process is expected
to be simpler, and so, faster - both conceptually and computationally -, since light
weight is already guaranteed to certain degree. Thus, such optimization approach
would mostly focus on redistributing material to gain the desired observable properties
(e.g.; auxeticity). It could even guide their (inverse) design [76-80], as a sort of inverse
homogenization [81,82], thus circumventing the ill-posedness of such quests. Diverse
data-driven attempts exist for inverse metamaterial design, both with the continuum
[83-86] and discrete lattices [87,57] as starting points. All these aspects, as well as a
3D generalization, will be present in subsequent publications.

Acknowledgements

The authors would like to thank the UPM students who printed the first prototype.

References
[1] A. Michell, ”The limits of economy of materials in frame-structures”, Phil Mag

8 (1904) 589–597.
[2] G. Rozvany, ”Grillages of maximum strength and maximum stiffness”, Interna-

tional Journal of Mechanical Sciences 14 (1972) 651–666.
[3] W. Prager, G. Rozvany, ”Optimization of structural geometry”, Elsevier, 1977,

p. 265–293.
[4] M. P. Bendsøe, N. Kikuchi, ”Generating optimal topologies in structural design

using a homogenization method”, Computer Methods in Applied Mechanics and
Engineering 71 (1988) 197–224.

[5] M. P. Bendsøe, ”Optimal shape design as a material distribution problem”, Struc-
tural Optimization 1 (1989) 193–202.

[6] R. Cazacu, L. Grama, ”Steel truss optimization using genetic algorithms and
FEA”, Procedia Technology 12 (2014) 339–346.

[7] G. Allaire, R. V. Kohn, ”Topology optimization and optimal shape design us-
ing homogenization”, in: Topology Design of Structures, Springer Netherlands,
1993, pp. 207–218.

[8] G. Allaire, C. Dapogny, F. Jouve, ”Shape and topology optimization”, Elsevier,
2021, p. 1–132.

[9] G. Rozvany, ”The SIMP method in topology optimization - theoretical back-
ground, advantages and new applications”, in: 8th Symposium on Multidisci-
plinary Analysis and Optimization, American Institute of Aeronautics and As-
tronautics, 2000.

[10] A. Dı́az, O. Sigmund, ”Checkerboard patterns in layout optimization”, Structural
Optimization 10 (1995) 40–45.

9



[11] O. Sigmund, J. Petersson, ”Numerical instabilities in topology optimization: A
survey on procedures dealing with checkerboards, mesh dependencies and local
minima”, Structural Optimization 16 (1998) 68–75.

[12] X. Y. Yang, Y. M. Xie, G. P. Steven, O. M. Querin, ”Bidirectional evolutionary
method for stiffness optimization”, AIAA Journal 37 (1999) 1483–1488..

[13] C. S. Edwards, H. A. Kim, C. J. Budd, ”An evaluative study on ESO and SIMP
for optimising a cantilever tie-beam”, Structural and Multidisciplinary Optimiza-
tion 34 (2007) 403–414.

[14] P. Hajela, E. Lee, ”Genetic algorithms in truss topological optimization”, Inter-
national Journal of Solids and Structures 32 (1995) 3341–3357.
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