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Abstract

The extremely fine meshes needed to run problems with details on two scales have
promoted several computational homogenization techniques. However, these tech-
niques typically require periodicity of the deformations and the separation of scales.
In functionally graded metamaterials, two scales become relevant, but since every
metamaterial cell may differ slightly from the neighboring ones, neither the separa-
tion of scales nor periodicity conditions may be assumed to hold. Nevertheless, the
fact that every metamaterial cell differs only slightly and that we are typically con-
cerned with the global behavior may be considered to speed up the computational
procedure. This paper introduces a novel method specifically designed for metama-
terials to address these challenges by structuring the metamaterial in macroelements,
the stiffness matrix of elements being reduced prior to assembling in the global ma-
trix. The advantage is taken from the fact that macroelement matrices differ only in a
few terms. This strategy significantly improves computational efficiency, enabling the
handling of very large meshed structures in metamaterials with improved performance
compared to conventional FEA techniques.
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1 Introduction

Metamaterials, engineered composites with properties not typically found in nature,
represent a frontier in material science and engineering. These materials are designed
with microstructures that grant them unique mechanical, optical, or electromagnetic
properties, such as negative refractive indices or exceptional strength-to-weight ratios
[1-6]. The utility of metamaterials spans various industries, including telecommu-
nications, aerospace, and medical devices, offering transformative potential in each.

The advent of advanced 3D printing techniques has further amplified the importance
of metamaterials within the industry. These manufacturing technologies facilitate
the creation of complex geometries with precision that traditional methods cannot
achieve, enabling the practical realization of metamaterial designs that were once
purely theoretical. This convergence of design capability and manufacturing flexi-
bility has led to a surge in the exploration and application of metamaterials that push
the boundaries of what is possible in material science.

However, the intricate nature of metamaterials poses substantial challenges in their
modeling and simulation, primarily due to the computational demands of handling
detailed microstructural designs within large-scale simulations. Finite element anal-
ysis (FEA), while a robust tool for assessing material behavior, is often hindered by
high computational costs when applied to metamaterials, due to the need to manage
large mesh sizes and invert massive global stiffness matrices. Our research addresses
these challenges by introducing a novel hierarchical function approach tailored for
functionally graded metamaterials. This innovative method improves the efficiency
and scalability of FEA by significantly reducing the computational load. Crucially, it
maintains an accurate representation of the microscale features that are essential for
the unique properties of functionally graded metamaterials. In doing so, our approach
ensures that simulation efforts keep pace with the rapid advancements in 3D printing
and material design, particularly in the context of these specialized materials.

In the following sections, we provide a comprehensive overview of the formulation
of our proposed method. In addition, we detail the application of this method to a
two-dimensional example, which serves as a reference to demonstrate the efficacy and
robustness of our approach. This example will highlight how our method facilitates
more efficient and scalable computations, offering a clearer insight into the practical
advantages and applications of our technique in the analysis of functionally graded
metamaterials. Furthermore, we introduce the concept of enriching the macroelement
with higher-order approximation functions, akin to including the gradient of the de-
formation gradient. This promising idea will be further explored and exploited in our
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future works to enhance the fidelity and predictive capabilities of our simulations.

2 New finite element formulation for enhanced multi-
scale computations

This section introduces our novel finite element formulation, designed to optimize
multiscale computations without necessitating a significant disparity in scale between
the micro and macro levels. The formulation capitalizes on the concept of scale sep-
aration but does not rely on the traditional assumption that the microscale must be
substantially smaller than the macroscale. Instead, it provides a flexible framework
that adapts to the varying scales inherent in functionally graded metamaterials, uti-
lizing hierarchical functions to effectively manage internal degrees of freedom within
each macroelement.

2.1 Multi-Scale Condensation via Hierarchical Functions (MSC-
HF)

To visualize the proposed method, refer to Figure 1, which illustrates a meshed do-
main. In this representation, the blue nodes represent the internal nodes of the domain,
while the red nodes indicate the external nodes. Figure 2 provides a detailed view of
the macroelement (pseudo-RVE), adhering to the same color scheme–blue for internal
nodes and red for external nodes.

Figure 1: Example of a meshed domain.

A macro element within our model is constructed analogously to a classical RVE
but comprises numerous microelements. The stiffness matrix of the macroelement,
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Figure 2: Blow up of a meshed macroelement.

denoted asKe, is a square matrix with dimensionsNe×Ne, whereNe is the number of
degrees of freedom of the macroelement, typically large. The respective displacement
field isue and the forces applied to the macroelement are f e. The relationship between
the forces and the displacement field is expressed by the equation:

Keue = f e. (1)

The complete system is assembled as follows:(
Ne∧
e=1

Ke

)
U = F with

Ne∧
e=1

ue = U and
Ne∧
e=1

f e = F , (2)

Due to the large number of elements Ne, this results in a significantly large system.
To further elaborate on the internal function of the macroelement, consider a dis-
placement function u(x, y), which may represent ux or uy. Within the macroelement,
this function is approximated using shape functions of the microelement, resulting in
a piece-wise bilinear function ue(ξ, η), where ue encapsulates the nodal values and
(ξ, η) are the macroelement coordinates. This function can be further approximated
by a different set of functions as shown:

u(ξ, η) ≃
Nψ∑
I=1

ΨI(ξ, η)vI ≈ ψTv, (3)

where ΨI(ξ, η) are the approximation functions and vI are the function multipliers.
Consider the simplest linear case in one dimension, where the displacement ue(ξ)
within the macroelement can be expressed as a linear combination of the nodal dis-
placements, u1 and u2, and a series of higher-order terms that enhance the approxima-
tion:

ue(ξ) = h1(ξ)u1 + h2(ξ)u2 +

nψ∑
i=3

ψi(ξ)v
e
i , (4)
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where h1(ξ) and h2(ξ) are the linear shape functions:

h1(ξ) =
1

2
(1− ξ), (5)

h2(ξ) =
1

2
(1 + ξ), (6)

The functions ψi(ξ) are chosen such that they vanish at the element boundaries, en-
suring u1 and u2 remain the primary nodal values:

ψi(−1) = ψi(1) = 0 (7)

This choice is particularly advantageous because it maintains the nodal values of the
element while allowing for an enriched representation within the element through the
addition of hierarchical shape functions. These functions, often derived from Legen-
dre polynomials, are modified to be zero at the nodes, thus satisfying the boundary
conditions and contributing to the element’s internal representation [7-9].
In the context of this work, we opted for harmonic functions to construct the series of
higher-order terms in equation (4). Harmonic functions are particularly suited for this
purpose due to their orthogonality and smoothness, which can effectively capture the
displacement field within the element while satisfying boundary conditions:

ψi(ξ) =

cos
(

(i−2)πξ
2

)
for odd i > 2,

sin
(

(i−2)πξ
2

)
for even i > 2.

(8)

Harmonic functions, as described in equation (8), offer the advantage of providing
a complete and orthonormal basis in the function space of the element. A graphical
representation of the standard shape functions augmented by the four first harmonic
functions can be found in Figure 3.
For the 2D case under consideration, the approximation functions are defined as fol-
lows:

ψij(ξ, η) =

{
linear 2D shape functions for i, j ∈ [1, 2]

g(ξ, i) ∗ g(η, j) for i, j > 2,
(9)

where g(x, idx) are the harmonic 1D approximation functions described in equa-
tion (8). A graphical representation of the harmonic shape functions (i, j) = (3, 3),
(i, j) = (3, 4) and (i, j) = (4, 3) can be found in Figure 4.
Let us now return to the interpolation of displacements within the macroelement, uti-
lizing the defined 2D approximation functions

ue(ξ, η) ≃ ψ(ξ, η)ve. (10)

For a macroelement with N nodes and Nψ approximation functions, the displacement

5



Figure 3: 1D standard functions augmented by the four first harmonic functions.

Figure 4: 2D harmonic functions (3, 3), (4, 3) and (3, 4).
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vector has the form:

u1x
u1x
u2x
u2y

...
uNx
uNy


=



ψ11 0 ψ12 0 . . . ψ1Nψ 0
0 ψ11 0 ψ12 . . . 0 ψ1Nψ

ψ21 0 ψ22 0 . . . ψ2Nψ 0
0 ψ21 0 ψ22 . . . 0 ψ2Nψ
...

...
...

... . . . ...
...

ψN1 0 ψN2 0 . . . ψNNψ 0
0 ψN1 0 ψN2 . . . 0 ψNNψ





v1x
v1x
v2x
v2y
...

vNψx
vNψy


.

The displacement field of the macroelement can be partitioned in boxes:

ue =
[
ψS ψH

] [veS
veH

]
. (11)

Using Equation (10) in conjunction with Equation (1), and considering Equation (11):

Keue = f e

Keψve = f e

Keψve = f e

ψTKeψve = ψTf e. (12)

Being
Ke

∗∗ = ψ
TKeψ (13)

the projected stiffness matrix in the space of the orthonormalized approximation func-
tions.
Following from Equation (12)[

ψT
S

ψT
H

]
Ke
[
ψS ψH

] [veS
veH

]
=

[
ψT
S

ψT
H

]
f e. (14)

Note that the forces inside the macroelement are typically null; therefore, Equation
(14) can be written as:[

ψT
SK

eψS ψT
SK

eψH

ψT
HK

eψS ψT
HK

eψH

] [
veS
veH

]
=

[
ψT
Sf

e

0

]
. (15)

In compact form [
Ke

SS Ke
SH

Ke
HS Ke

HH

] [
vS
vH

]
=

[
f eS
0

]
. (16)

Note that Ke
SS , Ke

SH , Ke
HS , Ke

HH and f eS are the projections of the stiffness matrix
and the forces over the space of the approximation functions ψ defined in Equation
(9).
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From the system of Equations (14), the multipliers of the hierarchical functions (vH)
can be condensed, and system is reduced to(

Ke
SS −Ke

SH (Ke
HH)

−1Ke
HS

)
veS = f eS. (17)

The term between parentheses is the condensed macroelement stiffness and is the
matrix to be assembled into the global system of equations.

K̄
e
SS =Ke

SS −Ke
SH (Ke

HH)
−1Ke

HS. (18)

The dimensionality of the problem is reduced from 2N × 2N to 2Nmacro × 2Nmacro,
whereN , the number of nodes, is much larger thanNmacro, the number of macronodes.
The computationally expensive operation in this reduced system is given by:

K̄
e
HS = (Ke

HH)
−1Ke

HS. (19)

This reduction highlights the need for efficient computational strategies to manage
the complexities involved. The subsequent subsection will be devoted to explaining
effective methodologies for performing this condensation, aiming to optimize compu-
tational resources and ensure accurate results.

2.2 Strategies for efficient matrix condensation in macroelement
analysis

Note that the matrixψ is predefined for a given RVE and remains immutable. Further-
more, the stiffness matrix Ke of the macroelement can be constructed using various
finite elements, such as triangles or squares, treating it as if it were an independent
structure. Each macroelement must be indexed if microelements are included within
its structure. The projected matrix Ke

∗∗, given by Equation (13), is carried forward
from one macroelement to the next and is modified only when a microelement is
added. This modification is a key advantage of the method, as it involves operations
only with the newly added components.

Ke
HH =Ke−1

HH + ψT
HδψH , (20)

Ke
HS =Ke−1

HS + ψT
HδψS, (21)

Ke
SS =Ke−1

SS + ψT
SδψS, (22)

where
δ =Ke −Ke−1. (23)

Notice that if the changes from macroelement to macroelement are small then δ is
a sparse matrix, with most entries being zeros. Additionally, the multiplication of a
sparse matrix by a dense matrix is highly optimized in most programming languages,
making this a very fast computation.
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The number of hierarchical approximation functions required typically does not need
to be extensive, as these primarily account for the internal degrees of freedom. For
most engineering applications, approximately 10 harmonic functions are sufficient
to adequately capture the internal structure of the macroelement. The computation
of K̄e

HS as outlined in Equation (19) can efficiently be performed using direct LU
decomposition.
It is important to remark that the interpolation of the external nodes of the macroele-
ment is conducted using linear functions. However, in cases where increased precision
is necessary to more accurately represent the contribution of the internal structure of
the macroelements, a larger number of approximation functions may be required. Un-
der such circumstances, the following iterative process is proposed to enhance the
model’s computational efficiency.
If the changes from macroelement to macroelement are small, then we can propose

K̄
e−1
HS − K̄e

HS → 0, (24)

(Ke−1
HH)

−1Ke−1
HS − (Ke

HH)
−1Ke

HS → 0, (25)

Ke
HH(K

e−1
HH)

−1Ke−1
HS −Ke

HS → 0, (26)

denoting

Xe ≡ (Ke
HH)K

e
HS (27)

and replacing into Equation (26)

Ke
HHX

e−1 −Ke
HS → 0, (28)

(Ke−1
HH +∆Ke

HH)X
e−1 −Ke

HS → 0, (29)

Ke
HS = (Ke−1

HH +∆Ke
HH)X

e−1, (30)

Ke
HS =Ke−1

HS +∆Ke
HHX

e−1, (31)

(Ke
HS)

−1Ke
HS = (Ke

HS)
−1(Ke−1

HS +∆Ke
HHX

e−1), (32)

Xe = (Ke
HS)

−1(Ke−1
HS +∆Ke

HHX
e−1). (33)

2.3 Enriching the macroelement

A bilinear macroelement is analogous to a first-order FE2 approach, where a con-
tinuum deformation gradient is transferred to the microscale to derive the resultant
stresses.
However, the current procedure can accommodate higher-order approaches, similar
to incorporating the gradient of the deformation gradient. The concept involves uti-
lizing quadratic macroelements. For these elements, standard 1D shape functions are
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designed with a third node positioned centrally.

h1(ξ) =
1

2
ξ(ξ − 1), (34)

h2(ξ) =
1

2
ξ(ξ + 1), (35)

h3(ξ) = (1 + ξ)(1− ξ). (36)

The standard functions for this case include the terms constant, linear, and quadratic.
Therefore, the hierarchical functions will add from cubic terms, but need to banish at
the nodes (see Figure 5). This requirement ensures continuity and compatibility at the
interfaces between elements within the finite element mesh.

ψi = sin (i− 3)πξ. (37)

Figure 5: Second order approximation functions in 1D.

For the 2D case, a combination of sine and cosine harmonic approximation functions
can be used, provided that the combination includes at least one sine function. This
inclusion is essential to meet the compatibility criteria, ensuring that the functions
satisfy the necessary boundary conditions at the nodes and interfaces of the elements.

3 Benchmarking

To validate the effectiveness and applicability of our theoretical models, we have con-
ducted a series of benchmark tests using various configurations of metamaterials. The
creation of each metamaterial involves specifying the layout and mechanical char-
acteristics that define the material’s structure and response properties. This process
includes setting the overall dimensions of the metamaterial and preparing the detailed
arrangement of its constituent microstructures. These microstructures are arranged in
a pattern that alternates between solid and void elements.
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The fill pattern used in our metamaterial testing is designed with an “‘X” shaped
macroelement that is progressively filled from the outer edges toward the center. This
pattern simulates a scenario where the exterior of the material is exposed to environ-
mental influences or structural loads before the interior, mimicking the conditions of-
ten encountered in real-world applications such as protective coatings or architectural
elements.
Figure 6 illustrates a detailed representation of one of the metamaterial configurations
tested during our benchmarking study.

Figure 6: Example of a tested metamaterial with 246016 microelements.

To demonstrate the differences in performance between the proposed method and the
traditional FEM, we have conducted a series of benchmark tests. These tests compare
memory usage and computational times for each method across various configurations
of element numbers. The resulting data, as presented in Table 1, offer valuable in-
sights into the efficiency and scalability of each method. This comparison is essential
for identifying potential advantages and determining the suitability of the condensed
method for various engineering applications.
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Number of Elements Condensed Method Classic FEM
Memory Time Memory Time

36,100 304.78 MiB 787.700 ms 1.65 GiB 5.632 s
53,361 462.22 MiB 1.144 s 2.43 GiB 8.170 s
76,176 672.43 MiB 1.916 s 3.47 GiB 11.079 s

105,625 946.65 MiB 2.770 s 4.94 GiB 20.380 s
142,884 1.27 GiB 3.207 s 6.54 GiB 23.435 s
189,225 1.69 GiB 3.951 s 8.73 GiB 29.655 s

Table 1: Benchmark Comparisons: Condensed Method vs. Classic FEM.

4 Concluding remarks

The paper proposes a novel FEM that uses the characteristics of functionally graded
metamaterials. By efficiently dual-scaling the problem into micro- and macro-elements,
we manage to project and condense the stiffness matrix of each macroelement using a
set of hierarchical functions, which are harmonic in this case. This technique signif-
icantly improves computational efficiency by reducing the complexity of the matrix
operations involved.
The benchmarks demonstrate that this method outperforms traditional FEM approaches
in terms of both computational time and memory usage. Especially in large-scale
computations, our method shows a marked advantage, making it a valuable tool for
simulations that require high efficiency. This method not only facilitates a more de-
tailed understanding of the material behaviors at different scales but also optimizes
resource utilization, which is critical in complex engineering tasks involving func-
tionally graded materials.
The advancements introduced in this study provide a robust framework for further de-
velopment and application in various engineering fields, particularly where the prop-
erties of materials vary spatially. Future research will continue to refine this approach
and expand its application to more complex geometries and loading conditions.
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