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Abstract 
 

Digital Twins (DTs) have received significant recent attention due to their 

transformative potential across various application domains, involving design, 

manufacturing, operations, and maintenance. They promise to enhance decision-

making, enable predictive maintenance, improve operational efficiency, and manage 

complex systems. However, their design and deployment pose challenges, especially 

when moving beyond the widely used ‘digital shadow’ model prevalent in many 

industrial applications. This overview paper explores the concept of Digital Twins 

(DTs) and how they fundamentally represent a system-of-systems. The system-of-

systems framework captures how DTs interconnect multiple subsystems to function 

cohesively and adaptively. Multidisciplinary design optimization (MDO) tools and 

methods are considered critical in DT design and deployment. Special attention is 

required for issues such as modeling fidelity, uncertainty quantification, data analytics 

and integration, and real-time synchronization. Emerging tools involving artificial 

intelligence, machine learning, edge computing, and VR/AR-based human-machine 

interactions hold promise for exciting advancements in this technology. 

 

Keywords: multidisciplinary design optimization, digital twins, domain 

decomposition methods, uncertainty quantification, augmented and virtual reality, 

optimization 
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1 Introduction 
 

Digital twins [1-3] are virtual replicas of physical objects, systems, or processes, 

created using traditional modeling and simulation approaches but where the model is 

continuously augmented by real-time data obtained from the physical entity. They 

enable monitoring, analysis, and optimization of their real-world counterparts, 

providing insights and predictive maintenance. The concept may be traced to an effort 

at NASA to develop a digital mock-up of the Apollo 13 to study scenarios for a space 

rescue mission [4]. Michael Grieves is largely credited for coining the phrase in 

describing its use in product life cycle management and later in a 2014 white paper 

[5,6].  In 2012 Glaessgen and Stargel [7] offered what is perhaps the most broadly 

accepted definition of a digital twin as “…an integrated multiphysics, multiscale, 

probabilistic simulation of an as-built vehicle or system that uses the best available 

physical models, sensor updates, fleet history, etc., to mirror the life of its 

corresponding physical twin.” This description sets it aside from other terms such as 

a ‘digital model’ or a ‘digital shadow’ that are sometimes confused for digital twins. 

While a digital model can be created without any exchange of data between the 

physical entity and the model, digital shadows do sometimes incorporate data from 

the physical asset to improve or augment the digital counterpart [8].  A two-way flow 

of information between the physical asset and its digital counterpart is what separates 

a digital twin from a digital shadow (Figure 1a). A five-dimensional digital twin model 

has been proposed (Figure 1b) that shows the flow of data and control to and from the 

digital twin. The role of both online and offline optimization in the continual training 

and feedback from the digital twin is highlighted in this figure. 

 

 
Figure 1a. Digital Shadow & Twin            Figure 1b. Five-dimensional Digital Twin  

 

The global digital twin market size was estimated at US$16.75B in 2023 and was 

projected to grow at a compound annual growth rate (CAGR) of 35.7% from 2024 to 

2030. DTs have been pursued successfully in several applications in manufacturing, 

asset monitoring, and in enhancing operational efficiency.  

 

Examples of such developments include the work done at GE Aerospace in creating 

a Digital Twin of a jet engine [9], a near exact digital replica of the physical asset. On-

board sensors and cloud connectivity allow for data collection on the physical asset 

that is continuously transferred to the digital copy, updating that model as necessary. 

This virtual twin replicates the performance of the physical engine, allowing for 

Shadow 

Twin 
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continuous monitoring of performance and enabling predictive maintenance, resulting 

in enhanced reliability and productivity by managing the aircraft downtime.  

 

Manufacturing accounts for a major share of the global digital twin market [10]. By 

creating virtual models of equipment, the floor layouts, and of production processes, 

workflows and operations can be optimized in the digital space. Siemens Numerical 

Control in China that produces production systems, drives, and motors, implemented 

a digital twin that allowed them to consolidate three factories into one, reducing 

facility costs through optimized space and reduced wastage. Mars, the food and pet 

care company, used a digital twin to optimize it’s supply chains and boosted uptime 

at 160 factories. 

 

Another application directed at operational efficiency is a digital twin of the entire 

city of Shanghai [11]. In addition to detailed modeling of landmark structures and 

buildings, data from satellites, drones, and other sensors was used to generate digital 

copies of other buildings, water bodies, open spaces, and transportation network. This 

model is open to continuous enhancement as additional data is collected and is of 

immense value for those seeking to improve services, plan new developments, 

optimize building systems, and design for improved traffic flow. The digital twin 

assists in both operations and future designs and developments 

 

It is abundantly clear that for each of the examples, the effort and resources required 

to create the digital twin are significant. Additionally, digital twins can be designed at 

various levels of complexity, starting with a replica of an individual part or 

component. For instance, various components of a jet engine could be individually 

modeled as a digital twin and be used to perform health checks, plan maintenance or 

replacement, or even redesign the component for improved performance. At the next 

level, these component twins can be integrated to replicate a physical asset, such as a 

jet engine (Figure 2).  

 
Figure 2. Component twins combined into an asset twin 

 

The asset twin, which models the integrated functioning of the components, provides 

information about the asset's performance and condition to predict failures and suggest 

interventions for repairs or replacements. It can also be used to simulate new operating 

scenarios that could redefine component or asset design. Different asset twins would 

then integrate into a system twin, replicating the performance of the system. For 
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example, a digital twin for the jet engine could be combined with the twin for the fuel 

control system to form the powerplant system, allowing for assessments of 

performance and potential failure points, including control actions to optimize the 

maintenance schedule.  

 

When designing a jet airplane, for example, the performance of the airplane can be 

modeled by the digital twins of its many subsystems. How these subsystems interact 

with one another must be considered when integrating them to create a digital model 

of the airplane. This represents a complete system in of itself. However, the airplane 

must be acquired, scheduled for operations to yield optimal payback, and maintained 

for maximal reliability and use, but at least cost. Each of these tasks is a separate 

system for which digital twins can be created. Combining these individual systems 

into a single system (one can also integrate this into an air transportation system 

model) results in a system-of-systems digital twin that replicates the real-world 

operating environment, providing a potent tool to test, predict, and even design this 

collection of systems.  

 
Figure 3. A Simple System-of-Systems Representation of Digital Twins 

 

Such an application of digital twin technology in design, manufacturing, and 

operation/sustenance requires considerable investment of resources to realize the full 

potential – digital twins must be thought of as a parallel asset [12] that much like its 

physical counterpart, must go through the phases of conceptualization, structure or 

architecture formalization, detail design, deployment and working under a prescribed 

maintenance and update cycle (Figure 3). While current practices focus on developing 

this digital asset once a physical asset is available, there may be merit in pursuing 

these two assets in parallel, particularly if longer service lives are in play. 

 

The field of Multidisciplinary Design Optimization (MDO) or Multidisciplinary 

Analysis and Optimization (MDAO) developed out of a recognition that optimal 

configuration and design of practical engineering systems involves multiple 

disciplines, and that the interactions between these disciplines must be fully 

considered for maximal impact. Additionally, these interactions must be included 

formally and based on sound mathematical formulations. Success in the adaptation of 
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nonlinear programming methods in structural optimization [13-15] led to early efforts 

in expanding those approaches to multidisciplinary design problems and reviews of 

these developments are available in [16,17]. The need to formally account for 

interactions among disciplines has brought focus on approaches to decompose such 

system design problems into smaller interconnected subsystems, either purely on 

disciplinary lines or taking advantage of any obvious hierarchy in the analysis and 

design problem. These decomposed subsystems may be optimized sequentially, in-

parallel, or both, depending upon the topology of the resulting decomposition [18].  

 

Meaningful implementation of these approaches requires attention in some key areas, 

including a) decomposition strategies and architectures; b) efficient methods of 

analysis for design (efficient physics-based models, approximate or surrogate models, 

data based models); c) optimization algorithms (mathematical, heuristic); d) 

optimization strategies (all-in-one, simultaneous analysis and design, sequential linear 

programming, etc.); e) uncertainty quantification and uncertainty based design 

(uncertainty quantification in analysis, probabilistic design); f) Data handling and 

visualization; and g) human-machine interactions. Emerging tools of artificial 

intelligence and machine learning have had their own impact in many of these areas. 

AI deployed within digital twins assists through analysis of data, in the creation of 

predictive models, and identifying potential problems in the physical system. 

Similarly, AR and XR tools help merge the real and physical world, allowing the user 

to interact with the physical world. Some of these issues will be discussed in later 

sections of this paper. A schematic of these areas of research is presented in Figure 4. 

 

 

 
Figure 4. MDO: Areas of Research Focus 

 

Tools for data management and handling are an important consideration in the design 

and development of digital twins. Data collected from sensors on physical assets is of 

high dimensionality. In many instances, data is in the form of a time series [19,20], 

could be multi-modal and/or obtained from multiple sources. There is also uncertainty 

in data collection (sensor errors) and data transfer processes (transmission losses) that 
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must be managed [21-23]. There are challenges related to preprocessing and preparing 

this data for machine learning applications.  

 

Subsequent sections of this paper examine various aspects digital twin design, with a 

special focus on how approaches developed in the context of multidisciplinary design 

optimization can provide answers to challenges of a high-dimensionality data intense 

environment, deeply coupled interactions, and a computationally demanding problem.  

 
 

2 Implementing Digital Twins 

 

As stated in the preceding section, the design of a digital twin for any realistic physical 

system could proceed in a manner similar to designing the physical asset. A 

conceptual or preliminary design must be developed to satisfy high-level system 

functionalities. This conceptual design proceeds to a more detailed design phase, and 

the resulting system tested and verified before deployment. It is no surprise, therefore, 

that advancements in MDO methods are directly applicable to a structured 

development of digital twins.  

 

2.1 Architecture & System Decomposition  

 

At the outset of the digital twin building process, it is crucial to identify the 

characteristics of the system under consideration, whether it is a single complex 

system or a system-of-systems. Typically, the digital asset is built from multiple 

digital twins representing simpler components or subsystems, and it is important to 

clarify the flow of information among these twins to adequately account for 

interactions. 

 

MDO methodology involves the collaborative use of computational tools and 

algorithms to evaluate and refine designs across multiple interconnected domains. A 

key ingredient in this approach are methods for decomposing systems into smaller, 

more manageable subsystems to tackle complex design challenges effectively. These 

include hierarchical decomposition [24], where systems are broken down into nested 

levels of subsystems; collaborative optimization [25], which allows parallel 

optimization of subsystems while coordinating their interactions; and analytical target 

cascading [26,27], which systematically propagates design targets from the system 

level to subsystems and components, ensuring alignment with overall system 

objectives. When applied to digital twin design, the design variables would be the 

model parameters that need to be optimally selected for the model response to 

duplicate the behavior of the physical asset. The latter serves to define the objective 

and constraint functions in the optimization.  

 

These architectural frameworks are important not only for design optimization, but 

also underscore the importance of understanding the inherent structure of the analysis 

under consideration, as to how this analysis is coupled or linked together to direct the 

flow of information in the overall system. Both issues are important in the design and 
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deployment of digital twins. Both formal and heuristic methods have been proposed 

in the MDO literature in this context – two of the more widely used methods, the 

Design Structure Matrix and Directed Graphs are briefly discussed in subsequent 

sections 

 

2.1.1 The Design Structure Matrix (DSM): The coupling among sub-systems is well 

captured by a DSM [28] diagram. This tool provides a systematic way to represent 

and analyze the interdependencies between subsystems, facilitating efficient 

coordination and integration in multidisciplinary problems. Figures 5a-b show a 

hybrid coupled system and its generic DSM representation. There are six subsystems 

that are in play and the flow of information is shown by the arrows going into and 

emanating from the blocks. The DSM shown in Figure 5b has several cells, where 

each cell indicates the presence (X) or absence (blank) of a dependency between the 

subsystems. 

 

  
                                

  

       Figure 5a. Topology of Coupling                   Figure 5b. DSM - Representation  

   of Coupling 

 

 

In designing multidisciplinary systems, the ordering or grouping of analysis in the 

subsystems becomes important as a means of controlling computational costs. For 

example, it becomes computationally expensive if the completion of analysis in A is 

contingent on receiving information from F and then iterating further to convergence. 

On the other hand, if F does not need information from other blocks to  

compute the output, it would be more efficient to move the execution of F closer to 

the execution of A.  

 

When the number of subsystems or components included in the DSM are nominal, 

the reordering of executions can be performed based on a visual inspection. As this 

number increases into hundreds, more formal methods involving optimization 

techniques have been deployed for the purpose [29]. A highly cited approach is the 

Design Manager’s Aid for Intelligent Decomposition (DeMaid), first released by 
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NASA in 1989 to assist a designer understand the interactions among different 

components of a large complex system [30,31]. The original version included 

functionalities for minimizing the feedback couplings, grouping activities into 

iterative sub-cycles, and sequencing the design activities. DeMaid has been enhanced 

with addition of optimization algorithms to optimize the sequence of processes within 

each iterative sub-cycle based on time, cost, and iteration requirements [32]. 

 

2.1.2 Directed Graphs: Directed graphs [33], also known as digraphs, present 

another tool for representing the coupling within a system. In the context of 

multidisciplinary design optimization (MDO), a directed graph consists of nodes and 

directed edges, where each node represents a component or a subsystem, and each 

edge represents a dependency or interaction between subsystems. A directed graph 

represents general one-way relationships between nodes and can include cycles, 

illustrating various types of directional relationships without specific context. A 

dependency graph is a specific type of directed graph, that provides more structured 

and context-specific information about the order and precedence of tasks or modules. 

 

Formal graph theoretic methods have been considered in the design literature [34-36]. 

The approach includes constructing a directed graph that describes all possible 

interconnections between a set of coupled analysis tools. Graph operations are then to 

reduce this densely connected graph to a fundamental problem graph that describes 

the connectivity of analysis modules required to solve a specific system-level design 

problem. In the context of digital twins, this approach could be used to provide the 

best architecture of the digital twin for a required functionality.  

 

The use of formal methods such as the ones described above would be invaluable in 

identifying the flow of information through the system of systems and could clearly 

identify the input and output from each component or subsystem digital twin that 

constitutes this assembly. It also aids in the process of integrating these digital twins 

into a digital model that represents the entire system. An analysis of weights of trained 

backpropagation neural networks has been used as another approach for identifying 

topology of decomposition in coupled multidisciplinary problems [37,38].  

 

2.2 Modeling and Simulation 

 

MDO methodology is based on the availability of mathematical/computational 

models that represent the system behavior and are coupled with optimization 

algorithms to search for optimized designs. Similar modeling techniques are 

foundational to the development of digital twins. Generation of such models involves 

a variety of methods that combine data acquisition, computational techniques, and 

domain-specific knowledge. Geometric models are quite central in digital twin 

development, particularly in modeling layout of factories and production processes. 

To reflect the behavioral response of physical assets however, the types of models 

most typically used include physics-based models that rely on the fundamental 

principles of physics to simulate the behavior of these systems [39]. Data driven 

models are also widely implemented that use historical and real-time data to generate 
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and update models [40]. These approaches involve the use of statistical and machine 

learning methods to develop predictive models. A short discussion of these models is 

presented next. 

 

2.2.1 Solid Modeling: Geometric modeling using CAD (Computer-Aided Design) 

techniques involves creating precise mathematical representations of objects, which 

can be visualized and manipulated in a virtual 3D space. This process of creating 

realistic and precise geometric models is critical in digital twins for manufacturing 

and assembly, where process flows and human machine interaction can be modeled, 

simulated and optimized. Both machines and their operating environment can be 

represented by such geometrical models. Popular software packages such as 

AutoCAD, SolidWorks and Catia have been used [41] alongside gaming engines such 

as Unity3D [42] and Unreal Engine [43] for these tasks. Development of such models 

is a time intensive process and in many instances the trend is one where major 

equipment manufacturers are now providing digital models as a service to the 

consumer. 

 

LiDAR (Light Detection and Ranging) techniques have been deployed to create 

geometric models; this involves scanning physical environments with laser pulses to 

capture precise spatial data that is then processed to generate detailed 3D models 

representative of the real-world asset. Examples of this approach include creating the 

model of an environment in which a human interacts with a robotic arm [44] to 

optimize the robot movements for safe operations. Another example is an application 

of laser scanning to quickly map the geometry of large structures [45]. A disadvantage 

the use the laser scanning approach is the inability to model internal spaces in physical 

objects. 

 

2.2.2 Physics-Based Models: Where appropriate, physics-based models drawn from 

fundamental principles and well-known governing equations are used to simulate the 

different aspects of the physical system, from component models to subsystem/system 

models. Mechanical models based on classical mechanics principles can be used to 

analyze stress, strain, deformation, and kinematics in structures and materials. 

Likewise, the Navier-Stokes equations can be used to analyze flow patterns or 

pressure distribution in fluids, or Maxwell’s equations used to model electromagnetic 

fields, and chemical kinetics principles used to predict reaction rates. Multiphysics 

models integrate multiple physical phenomena to provide comprehensive simulations 

of complex systems, such as combining fluid dynamics, heat transfer, and chemical 

reactions to simulate combustion engines. Each type of model is crucial for accurately 

representing and predicting the behavior of real-world systems in digital twin 

applications. 

 

Finite element (FEA) and finite difference (FD) methods provide numerical 

approaches to solve complex partial differential equations (PDEs) that describe 

physical phenomena and comprise the mainstay of physics-based models for digital 

twins. Several commercial tools are available that implement these approaches and 

that integrate well with CAE and solid modeling software. ANSYS Mechanical and 
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ANSYS Fluent, ABAQUS, & MSC Nastran are some examples that have been used 

extensively. Combination of these methods have been deployed in in MDO problem 

solutions such as wind-turbine modeling [46] and aeroelastic design [47]. These early 

successes and extensive user experience has led to a natural adaptation into the design 

of digital twins for applications such as stress analysis of a ground vehicle suspension 

[48], in the wear analysis of a machining tool [49], and in the analysis of a battery 

cooling system [50].  

 

In MDO problems, models of different fidelity are deployed at various stages of the 

design process. The design of a new jetliner begins with conceptual design, moves to 

preliminary design before detailed analysis and design is performed. The design is 

then tested and validated before deployment in practice. As shown in Figure 6, 

analysis models of different fidelity are deployed at each stage of the design process.  

 
Figure 6. Schematic of the Design Process 

 

Similarly, in designing and deploying digital twins, it is important to consider the 

trade-off between computational speed and accuracy that must be built into a model. 

In doing so, however, it is important to bear in mind that even high-fidelity models 

have inherent errors that may result from incompletely modeled or misunderstood 

physics of the problem; discretization errors are always a concern when a continuous 

problem is represented by a discrete assignment of nodes or elements.  The added 

consideration in designing digital twins is that there is a bi-directional flow of data 

between the digital and physical assets. This creates opportunities for using data to 

tune model parameters but requires that the number of such parameters be limited 

because of constraints on the number of sensors in the physical asset. Design of such 

models becomes an embedded optimization problem that links the physical and digital 

assets in ways not encountered in traditional MDO problems. In most digital twin 

implementations, physics-based models are kept at intermediate fidelity and only a 

limited set of model parameters are considered in the online tuning. This is also 

desirable in the context of computational time for model execution – real time 

response from digital twins is required in many applications. MDO methods have 

focused on developing surrogate models for analysis to reduce the computational time 

for optimization [52-54]. These developments translate directly to development of 

data-driven models for digital twins. 

 

2.2.3 Data-Based Models: Data-based models are particularly useful in complex and 

dynamic environments, such as modeling industrial IoT applications, healthcare, or 

complex engineering systems. In such applications. traditional physics-based models 
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may be insufficient (even lacking) or too computationally intensive. If data can be 

generated from a physical asset for different combinations of input parameters, 

surrogate models can be generated using techniques such as linear regression, 

polynomial response surfaces [55,56], Kriging [57,58], generalized Bayesian methods 

[59], support-vector machines [60,61], and radial basis methods [62]. Data to train 

these surrogate models can also be generated from expensive physics-based 

simulations; the trained models would then be used in digital twins in lieu of the 

physics-based models. AI and machine learning (ML) methods have also been used 

to develop surrogate models. It is worthwhile to state that all these techniques have 

been extensively explored in the context of MDO problems. 

 

 

 

 

Linear regression offers the simplest surrogate model characterized by very low 

computational resource requirements. However, it offers limited applicability in 

modeling nonlinear interactions and polynomial response surfaces are more widely 

used in data-based models. They too are usually applied to model less complex 

behavior spaces, with the ability to capture the main effects and first-order 

interactions. These models generally work well for low dimensionality problems. 

Another widely used technique is based on a Gaussian process model. This technique, 

commonly known as Kriging, represents the function to be represented by a weighted 

superposition of known independent basis functions that define the trend of mean 

prediction The method does not require large numbers of parameters to be determined 

and works well for low dimensionality problems (parameters ~20 or less). The 

mathematics of the approach does not allow it to properly represent discrete parameter 

space. Support Vector Machines is another approach in modeling that partitions the 

parameter space into distinct clusters. Any new data point presented to this model 

results in a generalized output based on its proximity to the closest clusters [63]. 

 

 

 

 

In the domain of digital twins, data is used to either build surrogate models of a 

component, subsystem, or system behavioral response. Data can also be used to 

perform a system identification task for model development. With a trained model in 

place, sensor data can also be used to predict any behavioral change as may result 

from a damage or degradation in the system. The behavioral response models are 

generally obtained by tuning model parameters to minimize the error between 

predicted and expected response. System identification models follow a similar 

approach using sensor data to tune model parameters. The two classes of data-based 

models in digital twins are either ML models that include the surrogate models 

discussed above or statistical models. While the latter relies on the generation and 

tuning of a probability model, ML utilizes learning algorithms to find trends in large 

data sets [64] and an ability to generalize these trends for prediction. A useful way to 

look at various approaches [65,66] and tasks in model building is shown in Figure 7. 
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As shown in this figure, physics-driven surrogate models are obtained at the 

intersection of physics based modelling and big data solutions. Hybrid models are 

obtained from a combination of physics-based and data-driven models, and methods 

of data analytics.  

 

 
Figure 7. Combination of physics-based and data-driven modelling  

(adapted from [66]). 

 

 

2.2.4 Statistical Models: Digital twin design often involves handling time-series data, 

where statistical models play a crucial role. These models can identify patterns, 

relationships, and provide future estimates by mathematically representing the 

behavior available in the available data. Ranging from simple autoregressive models 

to more complex integrated moving average models, they offer a variety of options 

for analyzing and forecasting time-series data. 

 

Autoregressive models [67] are frequently used for time-series analysis and 

forecasting. The method assumes that the time series is a linear combination of past 

observations. They are most useful for modeling univariate time series data. Historical 

data is used for training, with weighting coefficients determined that minimize the 

error between measured and predicted outputs. The method is useful for time series 

showing trends and patterns but the assumption of linearity between current and past 

values is somewhat limiting. The method requires large amount of data to make 

accurate predictions.  

The moving average (MA) model [68] is another statistical technique used to model 

time-series. As opposed to the AR technique that uses past value to predict future 

values, the MA approach uses errors in past estimates (historical errors) to make future 

predictions. The coefficients of the model are determined by minimizing the 

difference between predicted and actual values. Current values are obtained as a linear 

average of past errors in prediction. The use of error variations in model building 

allows MA models to better account for irregular events. Like the autoregressive 
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methods, they too suffer from a linearity assumption and require significant data for 

training.  

 

 

The combination of the autoregressive and MA methods yields a powerful approach 

ARIMA (Auto-Regressive Integrated Moving Average) [69]) that is often used in 

digital twin development. ARIMA makes use of lagged moving averages to smooth 

time series data. The model consists of three distinct components – autoregression 

and moving average discussed earlier, and an integration component that replaces 

data values by the difference between the current data value and the previous value. 

The main advantage of ARIMA models is their ability to deal with non-stationary 

time series. There is considerable literature pertaining to the development of statistical 

methods for nonlinear system identification. The nonlinear autoregressive 

exogeneous (NARX) model [70] and the nonlinear autoregressive moving average 

model with exogeneous inputs (NARMAX) [71] have received significant attention.  

 

 

Digital twins have also been used for predictive diagnostics and in this context, there 

has been focus on degradation modeling. Many statistical models have been proposed 

for modeling degradation and single/multiple failure modes. These include among 

many others, Markov and semi-Markov models [72,73], and accelerated life testing 

(ALT) models [74]. Markov models suffer from being designed to deal with abstract 

failure states that are difficult to correlate with measured sensor data for predictive 

use. Bayesian model updating schemes used in conjunction with Markov models are 

being explored to overcome some of these deficiencies [75]. 

 

 

Statistical modeling for digital twins remains a very active field of research and a 

comprehensive survey of this subject is included in [8]. These models have not been 

a subject of focus in MDO research but given their applicability to digital twins, this 

area will require increased attention.  

 

 

 

2.2.5 Machine Learning (ML) Models: ML based models, in particular neural 

networks were adopted in MDO problems [76-78]. These early attempts focused on 

the use of multilayer backpropagation neural networks to create surrogate models for 

use in problems that were computationally intense, or where the optimization 

algorithms required repeated calls for function evaluations. The neural networks were 

trained on a set of input-output training patterns and the trained network used to 

predict output for an input pattern that was not part of the original training set. These 

trained networks were then connected to an optimization algorithm and responded to 

function evaluation calls from the optimizer as shown in the flowchart of Figure 8. 

Computational cost savings were realized during optimization, where exact analysis 

was not required whenever the optimizer needed information on the objective and/or 

constraint functions.  
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Figure 8. Trained Neural Network Surrogate Analysis Model for Optimization 

Other machine learning methods including support vector machines [79], Gaussian 

process regression [80], and backpropagation neural networks [81] have been used in 

digital twins for modeling degradation, system identification, and to replace physical 

models. Use of such models has enabled real-time predictions, an important 

requirement in digital twin applications. 

 

The literature in machine learning has grown significantly since these early advances. 

Deep learning has emerged as an important new direction for research. Deep learning 

[82] involves networks with multiple hidden layers and a very large number of 

parameters to select during the training process. They can be configured to handle 

high dimensionality input-output training data and have the capability to 

accommodate datasets that may contain different data types, structures, or drawn from 

disparate sources. As with traditional ML methods, deep learning methods have also 

been used in digital twins for system identification, model degradation, and to create 

surrogate models of computationally intensive physics-based models [83-85].   

 

Deep learning advancements have given rise to other neural network architectures that 

hold considerable promise for applications in MDO problems, and by extension, to 

the design and development of digital twins. 

 

2.2.5.1 Physics Informed Neural Networks (PINN): Physics-Informed Neural 

Networks (PINNs) [86,87] are a class of neural networks that learn from the physics 

governing a particular problem. Unlike traditional neural networks that are trained 

strictly on data, a PINN leverages the underlying physics governing the system. This 

is particularly effective in problems where the physics may be described by partial 

differential equations (PDEs). A schematic of a PINN is shown in Figure 9 that 

illustrates how the training is based on a combination of limited numerical data but 

also a measure that indicates the satisfaction of the differential equation. More 

specifically, the learning of the network parameters is based on a minimization of the 

mean square error of numerical training data and a minimization of the residual of the 

partial differential equation for the system. While attractive for MDO problems as a 

surrogate model, this approach is particularly attractive for digital twins in problems 

where the number of sensors may be limited; this deficiency in numerical data is made 

up by ensuring a satisfaction of the physics of the problem. 
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Figure 9. Schematic of a PINN network  

 

 

 

The approach is particularly elegant in that the derivative information required in the 

computation of the PDE loss function is automatically available in the 

backpropagation network computations. There are some issues, however, that may 

detract from the effectiveness of the approach. While first order derivatives are easily 

obtained in the computations, higher order derivatives and fractional derivatives 

require special treatment [88] that adds to the computational burden. Additionally, the 

loss function being minimized in the training comes from a combination of PDE 

residuals and numerical input-output data. Appropriate weighting of these terms is 

necessary to remove the bias. This notwithstanding, the approach has considerable 

promise for digital twin applications. 

 

 

 

Other approaches falling into the category of physics-informed neural networks are 

data augmentation [89] and transfer learning [90] methods. In the former approach, 

the simulation data generated in the physics-based model is augmented with 

experimental observations to create an enhanced set of learning patterns for ML based 

learning. The transfer learning approach differs from the previous methodology in that 

the model is first trained using the data from the physics-based model. A fine-tuning 

operation is then invoked using experimentally recorded data. 

 

 

 

2.2.5.2 Generative Adversarial Neural Networks (GANN): Generative Adversarial 

Networks (GANs) [91,92] are a class of neural networks designed to generate new 

data samples that resemble a given dataset. It has been used in the context of 

multiobjective design optimization for creating new optimal designs on the Pareto 

front [93]. As shown in Figure 10, the network consists of two principal components 

- a generator and a discriminator. The generator proposes new designs (also referred 

to as synthetic data), while the discriminator evaluates whether the data is real (based 

on its training on real data) or fake (produced by the generator).  
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Figure 10. Schematic of a GANN network  

 

 

During training, the generator aims to produce increasingly realistic data to pass the 

discriminator test, while the discriminator strives to become better at distinguishing 

between real and fake patterns. This adversarial process continues until the generator 

produces high-quality data indistinguishable from the real dataset, making GANN a 

powerful tool for tasks like image synthesis, data augmentation, and super resolution. 

These networks have an important role in digital twins where additional data may be 

required to train surrogate models. When digital twins are designated for personnel 

training purposes (as in workforce development for machine operations), such 

networks could provide realistic data patterns representing new scenarios for 

consideration.  

 

2.3 Uncertainty Quantification 

  

A digital twin is a virtual representation of a physical asset that seeks to mirror its 

real-time state. As discussed in previous sections of the paper, the task requires the 

creation of digital models that simulate the behavior of the physical system and that 

must interact with real-time data to make useful observations, or to provide 

appropriate operational decisions. For there to be a level of confidence in using such 

systems, a systematic effort must be undertaken to quantify uncertainty in various 

elements of the digital twin design. Both aleatoric and epistemic sources of 

uncertainty [99] are endemic to such modeling efforts. The former refers to an 

irreducible form of uncertainty – it relates to things like uncertain material properties, 

manufacturing tolerances, uncertainty in load conditions, etc. Data recorded by 

sensors may have some inherent measurement errors or transmission of data may be 

subject to losses or corruption. These types of uncertainty are typically handled 

through an assumed probability distribution that would then allow for the computation 

of a level of confidence in any prediction. Epistemic uncertainty comes about from 

lack of knowledge such as may result from limited data, model definition, and or lack 

of knowledge that may result in poor assumptions. In ML-based models, this 

uncertainty can be reduced by making use of physics to enhance the prediction 

capabilities [87] (PINNs as described in the previous section). 
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The subject of uncertainty quantification is both important and is a highly researched 

area. Uncertainty or reliability-based design has been actively pursued in the context 

of MDO and is directly applicable to the digital twin problem. An extensive review 

of this field is beyond the scope of this paper. Nevertheless, some key approaches to 

epistemic uncertainty quantification in ML-based approximations in digital twins are 

included here for completeness. 

 

There are non-probabilistic approaches to uncertainty quantification including fuzzy 

logic [94] and evidence theory [95]. Fuzzy logic provides a framework for handling 

uncertainty by allowing variables to take on a range of values with varying degrees of 

truth, rather than being strictly binary. By using membership functions and linguistic 

variables, fuzzy logic can effectively capture and process the inherent uncertainty in 

real-world situations, facilitating more robust decision-making and predictive 

analysis. Additionally, fuzzy logic can be combined with other computational 

methods, such as machine learning, to further enhance its capability for uncertainty 

quantification.  

Evidence theory provides an alternative approach for defining uncertainty in terms 

of degrees of belief in events rather than fixed probabilities. In this framework, each 

piece of evidence is used to assign a degree of belief, known as a Basic Probability 

Assignment (BPA), to subsets of possible outcomes. A belief function is used to 

quantify the minimum degree of belief that can be committed to a subset of outcomes 

based on available evidence. Dempster’s rule combines BPAs from different sources 

of evidence, updating the belief functions to reflect the aggregated evidence. The 

approach has been used for uncertainty quantification in [96]. 

In the context of digital twins, probabilistic methods have received greater attention 

for quantifying uncertainty in ML-based models [97-99]. These approaches are 

largely directed at quantifying epistemic uncertainty. Some of the more popular 

approaches are summarized as follows. 

While computationally expensive and largely intractable for high dimensionality 

problems, Monte Carlo simulations have remained a popular approach due to their 

relative simplicity. Many random samples of uncertain parameters are used to run 

simulations and probability distributions obtained as the output. Another commonly 

used approach employs sensitivity analysis to evaluate how variations in input 

parameters affect the output of the model. By identifying the most influential 

parameters, efforts are focused on accurately characterizing these critical parameters. 

Techniques such as variance-based methods [100], Sobol indices [101], and local 

sensitivity measures are used in such an approach.  

 

Gaussian Process Regression (GPR) is another technique that has been applied for 

uncertainty quantification [102], providing a flexible and non-parametric approach to 

modeling complex data. The approach assumes that the outputs of the training patterns 

follow a Gaussian distribution characterized by a mean function and a covariance 

function. The mean function typically starts as zero, and the kernel defines the 

relationship between points in the input space. The choice of kernel function is crucial 
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as it represents assumptions about the function's smoothness, periodicity, and other 

properties. When new data is observed, the GP updates its beliefs about the function 

and computes a posterior distribution, which provides a mean function that predicts 

the expected output and a covariance function that quantifies the uncertainty around 

these predictions. 

 

Bayesian Neural Networks (BNNs) [103] are an approach to quantify uncertainty in 

the predictions available from neural networks by incorporating Bayesian inference 

into neural network modeling. Unlike traditional fixed weight neural networks, each 

weight in BNNs is characterized by a distribution, typically Gaussian, with a mean 

and variance. During training, Bayesian inference is used to update the posterior 

distributions of the weights based on the observed data. This involves calculating the 

posterior distribution of the weights given the observed data. When making 

predictions, BNNs use the posterior weight distributions to generate multiple sets of 

outcomes. This distribution of predictions reflects the uncertainty in prediction. A 

drawback of the approach is in scaling to high-dimensionality input spaces.  

Ensembles of neural networks have also been proposed [104] as another approach to 

quantify uncertainty. The process involves independently training several neural 

networks that have different architectures, weight initializations, and hyperparameters 

such as learning rate or batch sizes. The performance of each network is evaluated 

using the validation test data and the best performing networks are identified and their 

predictions aggregated using an averaging, weighted averaging, or voting (in 

classification problems) procedure. Ensembles tend to generalize better to unseen data 

compared to individual networks. They can mitigate the risk of overfitting, as the 

combination of multiple models smooths out the biases in an individual model. 

Ensembles can provide a measure of uncertainty in their predictions. The variance in 

the predictions of the individual networks can be used to quantify the confidence in 

the ensemble's output. A higher variance indicates higher uncertainty. Ensemble 

networks still incur a high computational cost due to the requirement of training 

multiple networks. This is a deterrent for their use in the real-time environment of 

digital twins. 

Polynomial Chaos Expansion (PCE) [105] is a more advanced technique that 

represents the uncertain parameters as a series of orthogonal polynomials. PCE can 

efficiently propagate uncertainty through the model by approximating the model 

response as a polynomial function of the uncertain inputs. This method is particularly 

useful for systems with smooth responses and can significantly reduce the 

computational cost compared to Monte Carlo simulations.  

 

Hybrid approaches that combine multiple UQ techniques are often employed to 

leverage the strengths of each method. For instance, coupling Monte Carlo 

simulations with surrogate models like PCE or GPR can provide a balance between 

accuracy and computational efficiency. The choice of UQ method depends on the 

specific characteristics of the system, the nature of uncertainties, and the available 

computational resources, making it essential to select the most appropriate approach 
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for each application. An additional degree of complexity is introduced as one 

considers large dynamical systems and the need to quantify uncertainty in those 

systems in a computationally efficient manner [99].  

 

3 Optimization for Digital twins 

 

Optimization methods have a critical role in the design and deployment of digital 

twins. These methods are used to optimize digital twin parameters so that their 

predictions match those of the physical assets, to search through a space of possible 

decisions to find an optimal operational strategy, and to identify emerging problems 

in the physical system that need attention The latter refers to the application of 

optimization in predictive maintenance by forecasting potential failures and 

optimizing repair schedules, enhancing the reliability and lifespan of the physical 

systems. At the level of initial digital twin design, optimization is performed offline. 

Here, all aspects of system design are in play – system architecture, function 

approximations including uncertainty quantification, reliability-based design, 

decomposition of system and best coordination strategies for optimization, etc. 

Embedded in the concept of system design is the idea of co-optimization that refers 

to the simultaneous optimization of multiple interconnected systems or components 

to achieve a global optimum that benefits the entire system. Consideration of 

interactions and dependencies results in an enhanced overall performance. In addition 

to offline optimization, online optimization is also required in digital twin design. 

Such optimization is required when the twin has been deployed and is in use. 

Examples of this include manufacturing process planning or critical vehicle path 

determination under changing operating conditions.  

 

3.1 Offline Optimization: Offline optimization is performed in several key areas of 

digital twin design to ensure their effectiveness and efficiency. Prime examples of 

these areas include model calibration, optimal instrumentation of the physical asset, 

process optimization including sub-system integration, and scenario analysis and 

planning among others. A few of these problems are examined next with a view of 

looking at special aspects of the optimization problem.  

 

3.1.1 Parameter Calibration: Approximating the behavior of physical assets by 

analytical or numerical models (physics-based, data based) necessitates the selection 

of model parameters whether they be elements of a physics-based model or parameters 

of a neural network. Model calibration and model validation are two essential steps in 

the development and deployment of predictive models. First, it is important to 

calibrate the uncertain model parameters. While Bayesian calibration methods [106] 

have been suggested for this purpose and shown to be accurate and robust, their actual 

implementation is both involved and computationally intense.  

 

Optimization methods provide an alternative approach for this purpose. In this 

approach a given metric may be maximized or minimized to estimate the problem 

parameters. The least squares method minimizes the squared error between the known 

output and that obtained from a predictive model with the unknown parameters. 
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Applications of this approach are presented in [107,108]. Such an optimization-based 

approach typically produces deterministic estimates of the optimized problem 

parameters. Use of techniques such as the Markov Chain Monte Carlo (MCMC) [109] 

has been proposed to mitigate this drawback. To do this one assumes a prior 

distribution for the parameters to reflect initial uncertainty. One also defines a 

likelihood function based on observed data and then combine the priors and likelihood 

using Bayes' theorem to obtain the posterior distribution. The MCMC algorithm is 

used to sample from this posterior distribution, generating a range of plausible values 

for the parameters allowing for uncertainty quantification in model predictions. 

 

 

The choice of the optimization algorithm itself is problem dependent, ranging from 

linear least squares approach to gradient based nonlinear programming algorithms, 

and metaheuristic random search algorithms such as genetic algorithms and simulated 

annealing. 

 

 

3.1.2 Instrumenting the Physical Asset: Another offline optimization application is 

the optimal instrumentation of the physical asset to maximize the effectiveness of the 

digital twin. An example of this is to determine the optimal number of sensors (of 

different types) and their location on the physical system. This has a bearing on both 

the volume of data and its accuracy and would impact the eventual usefulness of the 

digital twin. Competing criteria such as power requirements, cost, robustness of 

system under partial degradation, etc., are in play, and this makes for a challenging 

multicriteria optimization problem [110,111]. The formulation of the optimization 

problem – how the objective criteria are defined, the choice of design variables, and 

constraint formulation present interesting and challenging optimization problems.  

 

Broadly speaking, this is a topology optimization problem that lends itself quite well 

to heuristic search algorithms such as genetic algorithms. Applications using this 

approach [112,113] have been proposed, including cases where the problem is 

formulated as a multicriteria design problem. This problem is also one where it is 

important to consider aleatoric uncertainty in the design process. Given that there is 

natural variability in sensor quality, it is important to include this effect in the optimal 

design process.  

 

The choice of the objective function for optimization, formulating the uncertainty-

based optimization, and using appropriate technique to perform this optimization 

represent the principal challenge in this problem. The most used objective criteria 

include probability of detection that minimizes the number of false positives and 

negatives [114], the information gain criterion that uses quantitative metrics to 

measure the usefulness of data collected in a sensor network [115,116], and the value 

of information criteria that measures the value of data collected from a particular 

location by comparing that location against others in the domain [117]. A combination 

of these criteria can be used in the optimization process by interchanging criteria with 

constraints. 
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Once a model has been calibrated, it must still undergo the process of validation which 

confirms that the model of the physical entity conforms to the expected system 

performance requirements. The model must first satisfy the face validity test which is 

largely subjective. Animation and Turing tests have been implemented in this context 

where the goal is largely one of checking the model’s realism when compared against 

the physical entity. A second, more quantitative test is to compare the actual simulated 

data against data from the real system and use statistical measures to assess the 

similarity.  

 

3.2 Online Optimization 

 

Once the digital twins have been developed and deployed, their operation calls for the 

continual use of optimization techniques for getting the most out of their availability 

– the capability to simulate, predict, and optimize performance enables more informed 

decision making. This online optimization must provide real-time performance and 

special approaches have been developed to accommodate this requirement. Real-time 

performance is defined [99] as “…the minimum computational speed required to 

achieve seamless and uninterrupted optimization, prediction, and control of the 

system of interest.” In real-time optimization, the optimized design set is re-computed 

on a regular basis. – these could vary significantly depending on whether the digital 

twin is assisting with operational control, providing insight into an allocation problem, 

or assisting with scheduling such as preventative maintenance. A hierarchy of process 

control activities adapted from [118] is shown in Figure 11. It is not always easy to 

ensure that sensing, prediction, and control can be performed at the desired time scales 

and approximations are necessary to get the desired feedback; such feedback must be 

accompanied by statistical levels of confidence. 

 

 

 

 
 

Figure 11: Hierarchy of Process Control Activities 

 

 

 

Examples of such hierarchy have been cited in the literature [119]. A digital twin 

designed for electric car battery management system could afford an online 

optimization that may take several hours or even days because of the relatively long 

operational life of the battery. On the other hand, a digital twin designed for structural 

health monitoring may require optimal feedback from the system at time scales of the 

order of micro-seconds [120]. Some of the available approaches for such applications 

are described in subsequent sections. 
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3.2.1 Real-Time Optimization in Manufacturing: Reinforcement learning (RL) has 

been used to optimize a digital twin for a manufacturing process (plastic injection 

molding) [121]. The flow of information between the physical and digital entities is 

shown in Figure 12. The process of training and deployment requires an environment 

to be defined that includes the state of the system (e.g. status of parameters like 

temperature, speed, pressure, energy consumption, and defect rate). An action space 

which refers to adjustment to state parameters and a reward function that, for e.g., 

looks at the combined merit production output, defect rate, and energy consumption. 

A suitable RL algorithm is deployed to handle the continuous action space. The RL 

agent consists of a policy network (actor) to determine actions and a value network 

(critic) to evaluate action quality, is then implemented. The RL agent then adjusts 

parameters, receives feedback in the form of rewards, and learns to optimize the 

settings over a period of time. Once trained, the performance of the network is 

evaluated to assess its generalization capability for previously unseen inputs, with 

potential fine-tuning of the reward function and hyperparameters to achieve optimal 

results. 

 

 
  

Figure 12. Schematic of Online Optimization of Digital Twin (from [121]) 

 

3.2.2 Digital Twin for Path Planning: The digital twin offers a continual flow of 

information between the physical and the digital entities. This allows for the 

generation of data-driven optimal strategies for path planning in complex situations. 

Optimized path planning is a critical requirement in areas of logistics, transportation, 

and manufacturing. By leveraging real-time data and advanced simulations, digital 

twins enable dynamic and optimized path planning. Virtual models integrate 

information from sensors, historical data, and predictive analytics to provide a 

comprehensive and up-to-date representation of the physical environment, allowing 

continuous monitoring and adjustment of routes based on changing conditions, such 

as traffic congestion, weather changes, and operational constraints. 
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To provide real-time optimal path planning that handle dynamic and sometimes 

uncertain environments, specialized approaches have been developed that are 

applicable to digital twin usage. A-Star [122] is a popular real-time pathfinding and 

graph traversal algorithm. It efficiently finds the shortest path from a start node to a 

target node by using heuristics to prioritize paths that are likely to lead to the goal 

quickly. Another approach for this purpose is the Dijkstra's algorithm [123], a classic 

method for finding the shortest path between nodes in a graph. While designed 

primarily for static environments it can be adapted for real-time applications with 

frequent updates.  

 

 

 

 

An example of path planning is available in [124] where a high-fidelity digital model 

of an autonomous ground vehicle was developed that allowed for the prediction of 

vehicle mobility with changing terrains. It included a probabilistic mobility map 

which identified permissible and restricted zones for the vehicle. Bayesian model 

updating schemes were used to update the model which then allowed for real-time 

mission planning. RL algorithms, such as Q-learning and Deep Q-Networks (DQN), 

learn optimal policies by interacting with the environment and receiving rewards or 

penalties. They have been applied for real-time path planning [125] as they allow for 

continuous learning and adapting to new conditions. It should be mentioned, however, 

that RL based methods require significant amounts of data and may be quite 

challenging to implement in practical applications. The nature of the optimization 

problem, most critically the definition of the objective criteria, has a significant 

influence on the methodology used in practice. 

 

 

 

 

 

3.2.3 Co-optimization and Digital Twins: Co-optimization refers to the 

simultaneous optimization of multiple interrelated systems or processes to achieve the 

best overall performance or outcomes. It has been stipulated earlier in the paper that 

digital twins are indeed representative of the framework of a system-of-systems. In 

this context, therefore, co-optimization facilitates the design of such a system by 

allowing for the inclusion of both performance characteristics and operational 

efficiency through the entire life cycle. By integrating real-time data from physical 

assets with advanced analytics, digital twins facilitate improved designs with superior 

decision-making and resource allocation. For example, in smart manufacturing, co-

optimization can help balance production schedules with energy consumption, leading 

to significant cost savings and reduced environmental impact (126). This approach 

enables a holistic view of systems, allowing for adaptive strategies that respond to 

changing conditions. A challenge in this work is in the creation of appropriate merit 

functions that include not only traditional design variables but also policy functions 

that control operations. These ideas are discussed in [99] in some detail. 
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The challenge in implementing this approach is multifaceted – establishing a 

hierarchical breakdown of the problem domain (system decomposition), creating 

component/subsystem response approximations with the fewest number of state 

variables that capture the essence of the behavioral response, quantifying the 

uncertainty in these approximations, and selecting the optimization framework and 

the underlying optimization algorithms that best manage the coupling within and 

among the subsystems.  

 

 

 

In addition to formal methods of decomposition described earlier, domain knowledge 

and user experience helps define the initial decomposition topology of the problem 

structure. Simultaneous execution of low fidelity models of the 

components/subsystem helps understand how changes in one part of the system affect 

the outcome of others. After this step, an integrated modeling and simulation strategy 

is adopted which allows model refinement over several time steps. This is 

schematically shown in Figure 13 that has been adapted from [127]. 

 
 

Figure 13. Optimizing Physical and Digital Assets Over Time 

 

This refinement is based on the use of real-time data from sensors and IoT devices, 

and robust strategies for integrating this data across all relevant subsystems are 

required to enable dynamic adjustments and continuous improvement. Continuous 

monitoring and adjustments are made based on real-time feedback and evolving 

conditions to ensure that the system remains optimized even as external factors 

change. Advanced optimization strategies and machine learning algorithms are 

foundation for co-optimization. These tools assist in not only parsing vast amounts of 

data to identify emerging patterns but also are an aid in the solution of the non-

deterministic optimization problem. The formulation of the optimization problem has 

its own challenges, in particular formulating merit or reward functions and constraints 

for problem.  

 

4 AR/VR Integration in Digital Twins 

 

The integration of augmented and virtual reality (AR & VR) technologies in digital 

twins offers transformative possibilities across different applications [128]. While 

these efforts are mostly at a speculative stage or in early stages of development, they 

are targeted to developing features in the digital twin platform that would allow users 

to visualize and interact with these digital replicas in immersive and intuitive ways. 

The focus thus far has been on production processes, service design, and Human–
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Machine Interaction. AR overlays digital information onto the real world, allowing 

users to see and interact with a digital twin in its actual physical context. As an 

example, manufacturing workers performing maintenance can use AR glasses to 

visualize the inner workings of machinery, providing step-by-step instructions 

directly in their field of view. VR on the other hand provides a fully immersive 

experience where users can interact with a digital twin in a simulated environment. 

This is particularly useful for training and simulation, enabling users to practice 

complex procedures without the risk associated with real-world operations.  

 

Among the most often cited potential applications of AR/VR in this application is in 

maintenance and repair operations. Real-time sensor data available to the digital twin 

can identify emerging maintenance needs or imminent failure. VR can be used to 

practice a repair procedure on the digital model before performing it on the physical 

asset. Engineers and designers can also use AR/VR to interact with digital twins of 

products during the development phase. Geographically dispersed teams can come 

together in a shared virtual space where they can interact with the digital twin in real-

time. This feature also has merit in performing design reviews, as dispersed 

stakeholders can experience and evaluate the product in a virtual space, identifying 

potential issues and improvements before physical prototypes are built. 

 

GE Healthcare has used AR with digital twins of their medical devices to provide real-

time support and training to technicians, ensuring efficient maintenance and 

operation. Similarly, Volvo Group has used AR technology to reduce time and costs 

associated with the quality assurance process in their engine assembly facility. 

Another noteworthy application has been in the creation of the digital twin of an entire 

production factory by BMW. Engineers at BMW and NVIDIA deployed VR to create 

these digital twins [129] with the specific target of optimizing workflows and 

ergonomics before physical changes are implemented, saving time and resources. 

 

The impact of extended reality tools in a digital twin environment is explored in [130]. 

This is an emerging field of research, and many technical challenges persist arising 

from the need to integrate complex systems, ensure real-time performance, and 

provide a seamless user experience. AR/VR hardware must continue to evolve and 

become powerful enough to handle complex computations. Existing hardware 

limitations can restrict the performance and usability of AR/VR in digital twins [131]. 

It is important to ensure that AR/VR systems and digital twins work seamlessly with 

other technologies and platforms; this requires interoperability standards and 

protocols to be developed and adopted [132]. Additional challenges in this field 

include the following. 

 

(i) Data integration and management is critical in digital twins and integrating 

this data into AR/VR environments in real-time is a significant challenge.  

(ii) Real-time processing is important for an immersive AR/VR experience. 

Achieving low latency in data transmission and processing is critical [133]. 

(iii) AR/VR applications require high-quality graphics and rendering to provide 

realistic and immersive experiences. This demands significant computational 



 

26 

 

power and advanced rendering techniques, which can be resource-intensive 

[134]. 

(iv) The design of intuitive and effective user interfaces for AR/VR environments 

is complex. Users must be able to interact with digital twins naturally and 

efficiently, which requires innovative UI/UX design and human-computer 

interaction techniques [135]. 

(v) The ability to scale AR/VR applications for digital twins to complex 

environments with multiple users can be challenging. Ensuring consistent 

performance and quality across different scales requires robust and flexible 

system architectures [136]. 
 

5 Closing Remarks 

The paper has focused on the field of digital twins as a rapidly evolving discipline 

within the realm of digital technology and data analytics, and that has an important 

emerging role in transforming many application domains by making available a 

powerful tool for simulation, analysis and optimization. The digital twin is a virtual 

representation of a physical object, system, or process. It differs from the tried and 

tested simulation model due to the continuing use of real-time data and historical 

evidence to enable learning, reasoning, and dynamically recalibrating for improved 

decision making.  

The paper posits that viewing digital twins as a system of systems allows for a more 

comprehensive and integrated approach to design such a system. This perspective 

provides for an opportunity to adapt various developments from the field of 

multidisciplinary design optimization (MDO) in this problem. Using formal methods 

of system decomposition to reduce the optimization of a complex system to smaller 

coupled subsystems is noted as a natural first step. In addition to establishing a 

topology for decomposition, tools developed to ease the computational burden of 

repetitive function analysis for optimization are directly applicable in this domain. 

Methods for function approximation including polynomial response surfaces, 

Kriging, machine learning based approximation, as well as hybrid approximation that 

combine the relative merits of physics-based and data-based models, are all applicable 

in the digital twin design and deployment. Methods to account for uncertainty 

quantification in such modeling, are also important in this context given the significant 

simplification that is often required for modeling very large and complex coupled 

systems. Similarly, MDO spurred developments in optimization methods for high 

dimensionality design problems are also adaptable to this problem domain, including 

considerable work done around optimizing in the presence of uncertainties. 

The paper identifies areas for continuing research and development. Continued and 

meaningful use of digital twins will require new advanced real-time analytics and 

predictive modeling capabilities. Using real-time data and processing this data at the 

edge in a low computational resource environment should be the motivation for such 

efforts. Additionally, the task of data management and data integration becomes 

critical in this environment. Research needs to be directed at developing robust data 
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integration frameworks that enable real-time data processing, storage, and retrieval 

while ensuring data quality and consistency. Interoperable systems and standardized 

protocols represent another area of research focus. The lack of common standards 

hinders seamless integration and communication between different digital twins and 

their corresponding physical counterparts. Universal standards that ensure 

compatibility across various platforms and technologies need to be developed and 

implemented. 

There is a need for developing intuitive interfaces and visualization tools that enable 

users to interact seamlessly with Digital Twins. Advances in AR/VR and their 

potential to drive new innovations in digital twin implementation have been discussed. 

Continuing research is needed to develop innovative ways to present complex data 

and insights in a user-friendly manner, enhancing decision-making processes. Even 

as these advances materialize, one cannot ignore the importance of cyber threats in 

such systems – the vastly interconnected digital and physical systems provide greater 

exposure to data breaches, and research in developing robust defense mechanisms for 

such architectures must be explored.  
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