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Abstract 
 

Aero-elastic processes at large slender engineering structures are closely related with 
nonlinear interaction of a stream and a vibrating structure. Although more 
sophisticated models can be adopted, a commonly used single-degree-of-freedom 
(SDOF) system represents a reasonable compromise between accuracy and simplicity. 
Experiments in a wind tunnel show that the regime of the vortex shedding is typical 
by quasi-periodic beatings that are encountered in the lock-in regimes. Here the vortex 
shedding frequency 𝜔௦ becomes close to the SDOF eigen-frequency 𝜔 with a small 
positive or negative detuning Δ ൎ |𝜔 െ 𝜔௦|.  
Experimental and also theoretical investigations indicate three regimes can be 
encountered that in the lock-in area, provided a combined deterministic (harmonic) 
and random excitation is applied: (i) 0 ൏ Δ ൏ Δ (small detuning): the response falls 
into synchronization and no beating effect occurs; (ii)  Δ ൏ Δ ൏ Δ௨: a quasi-periodic 
response of the SDOF system emerges consisting of self-excited and forced 
components; (iii) Δ  Δ௨: self-excited oscillations do not occur and only (nearly) 
mono-harmonic forced vibration can be observed. 
The work proved an existence of a frequency detuning interval where the system 
response has a quasi-periodic character. The main difference from conventional 
approaches consists in a possibility that the random excitation component can change 
qualitatively the response portrait. The detuning interval, where the quasi-periodic 
response occurs, seems to be larger than in the deterministic case. On the other hand, 
the variability of the response amplitude within one quasi-period is not so dramatic as 
in the purely deterministic case. The particular form of the excitation spectral density 
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is important and depends predominantly on its value in frequency which coincides 
with the eigen-frequency of the adjacent linear system and its integer multiples.  
 

Keywords: auto-parametric response, flow-induced vibration, van der Pol equation, 
vortex shedding, random load, combination of deterministic and stochastic excitation, 
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1  Introduction 
 

Aero-elastic processes at large slender engineering structures, e.g., bridge decks, tow- 
ers, masts, high rise buildings, ropes, are closely related with nonlinear interaction of 
a stream and a vibrating structure, see e.g. Pirner, [1]. Hence, the motivation of the 
paper originates from effects related with vortex shedding, see for instance Pospíšil et 
al., [2]. Although more sophisticated models can be adopted, a commonly used SDOF 
system represents a reasonable compromise between accuracy and simplicity, see 
Figure 1.  
 

Experiments in a wind tunnel show that the regime of the vortex shedding is typical 
by a quasi-periodic beatings that are encountered in the lock-in regimes. Here the 
vortex frequency 𝜔௦ becomes close to the SDOF eigen-frequency  𝜔 with a small 
positive or negative detuning Δ ൎ |𝜔 െ 𝜔௦|. The deterministic problem for various 
values of the detuning was investigated for special settings in [3, 4, 5] and later an 
investigation of a general formulation was published by the authors, [6].  
 

Experimental and also theoretical investigations indicate that in the lock-in area 
three regimes can be encountered, provided a combined deterministic (harmonic) and 
random excitation is applied:  

 

(i) for a very small detuning 0 ൏ Δ ൏ Δ , the response falls into synchronization 
and no beating effect occurs; this case was discussed by the autors the last year at the 
CSEEC 2019, [7];  

 

Figure 1: SDOF system outline and vortex shedding frequency in the lock-in domain 
as a function of the flow velocity.
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(ii) the detuning lies in the interval Δ ൏ Δ ൏ Δ௨ and a quasi-periodic response of 
the SDOF system emerges. The response consists of two components: self- excited 
vibrations in post-critical nonlinear state with the frequency 𝜔 and forced vibration 
due to vortex shedding in a slightly different frequency 𝜔௦. Both response components 
combine together which results in a beating effect. Some inspiration comes from the 
deterministic case see, e.g., Stankevich [5] or paper by the authors, [6]. 

 

(iii) The detuning is higher than the upper limit of the lock-in interval Δ  Δ௨. Self-
excited oscillation does not occur and only (nearly)mono-harmonic forced vibration 
can be observed. 

 

In general, the response in all three regimes includes deterministic and random 
components due to the fact that also the external excitation consists basically of a har- 
monic component (vortex shedding) and a random part originating from a turbulence 
generated by an interaction of the stream and the moving body. 

 
 

2  Methods 
 

From the theoretical viewpoint is the problem defined by a strongly nonlinear SDOF 
oscillator with an additive excitation combining deterministic and random 
components. Despite of simplification by an SDOF system, the process of a nonlinear 
aeroelastic interaction is still handled by a number of parameters which make it non-
transparent for the first view. 
 

 
 

𝑢, 𝑣 — displacement [m] and velocity, [ms−1]; 

𝜂, 𝜈 — parameters of the damping: [s−1,s−1m−2]; functions of the stream velocity; 

𝜔, 𝜔௦ — eigen-frequency of the adjoint linear SDOF system, frequency of the vortex 
shedding [s−1]; 

𝑃𝜔ଶ, 𝜉ሺ𝑡ሻ — amplitude of the harmonic excitation force [ms−2], broadband Gaussian 
random process [ms−2]; 

ℎ — multiplicative constant [ms−2]. 
 

The physical specification of the problem enables to formulate solution in the form: 
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which provides the SDE system for slowly variable amplitudes  𝑎, 𝑎௦ 
 

 

SDE (3) was investigated by the authors using the Fokker-Planck equation by means 
of stochastic averaging method and results were submitted for publication, [7]. This 
procedure enabled to identify many new phenomena ruling in the regime of a small 
detuning when  0 ൏ Δ ൏ Δ.  
 

However, the stochastic averaging is not applicable in the interval Δ ൏ Δ ൏ Δ௨ . 
The reason is that the averaging operation eliminates the time variable and FPE loses 
dependence on time in a "macroscopic" meaning. Amplitudes ac; as in further analysis 
represent constants. In order to describe the beating effect and the fully time dependent 
history within one quasi-period, it is necessary to keep the time dependence of FPE. 
Hence, the FPE solution should be conducted by means of the Galerkin-Petrov method 
applied on the series of stochastic moments. 
 
3  Results 
 

Performing this transformation, one obtains a system of ordinary differential 
equations (ODE) in the deterministic form keeping the time dependence, which 
follows from the deterministic part of excitation. It is included in the drift coefficient 
of the FPE. The ODE system for stochastic moments is non-linear and it is written in 
the normal form. The excitation consists of two parts, which pass to the FPE from the 
right-hand side of Equations (3) and subsequently to the ODE system. They are: (i) 
the random part of excitation (influence of a turbulence component) which appears as 
a certain constant resulting from the stochastic characteristics of the input process, in 
particular from the value of its spectral density in points (𝜔, 2𝜔, ... etc.); and (ii) the 
deterministic part of excitation (vortex shedding itself), which passes into the ODE 
system in the form of a parametric excitation. 

 

This ODE structure and excitation setting indicates that a solution with a strong 
periodical (or quasi-periodical) mean value (zero stochastic moment) representing the 
deterministic part of the response can be expected and, moreover, that the dynamic 
stability in probability (DSP) of the response is worthy to be examined. The DSP can 
be tested in a certain limited meaning of the term because only limited number of 
stochastic moments are available. However, if moments reveal to be convergent, the 
response stability in probability can be adopted. 
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To investigate a quasi-periodic response and limits of detuning Δ, Δ௨, which deter- 
mine presence of quasi-periodic beatings, the numerical simulation of the ODE 
system was multiply performed for various parameter settings. The subsequent 
evaluation of numerical results shows the existence of a quasi-periodic response for 
combined excitation consisting of deterministic and random (mono-harmonic) 
components. It is obvious that the quasi-period length approaches an infinite value for 
Δ ൌ Δ. For increasing detuning Δ ൏ Δ ൏ Δ௨ the quasi-period length is getting 
shorter, see Figure 2 demonstrating the response shape presented by the zero moment 
(mathematical mean value). 
 

In the next step, a more objective way of the stability testing, period length, its 
internal shape and other parameters will be attempted by means of the Floquet 
formalism applied to an ODE system with periodic coefficients. 

 
4  Conclusions and Contributions 
 

In general, it seems that the basic tendencies determined for the deterministic problem 
remain qualitatively in force. The work proved the existence of a frequency detuning 
interval in which the system response has a quasi-periodic character. The main 
difference from conventional approaches consists in a possibility that the random 
excitation component can change qualitatively the response portrait. The detuning 
interval, where the quasi-periodic response occurs, seems to be larger than in the case 
when only a deterministic excitation is assumed. While the value of Δ is basically the 
same as in the deterministic case, Δ௨ is much higher. On the other hand, the variability 
of the response amplitude within a single quasi-period is not as dramatic as in the 
purely deterministic case. The particular form of the excitation spectral density is 

                                      (a) (b)  

Figure 2: Sample of a system response: (a) time history, (b) trajectory in Poincaré  
diagram; detuning: upper row ∆ = 0.20, lower row ∆ = 0.30  
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important, which depends predominantly on its value in frequency that coincides with 
the eigen-frequency of the adjacent linear system and its integer multiples. At the 
boundary points of the detuning interval ሺΔ, Δ௨ሻ,  where the quasi-periodic response 
character vanishes, a good continuity with stationary solution types was observed. 
 

Some more effects and properties of the system have remained hidden so far, 
because the ODE system has only been investigated numerically. Semi-analytical 
investigation of this system by means of the Floquet theoretical background and other 
strategies appears very promising for the recognition of additional properties. These 
steps are planned in the near future. 
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