
Multisplitting Methods for Singular
Nonlinear Systems

J. Arnal

Department of Computer Science and Artificial Intelligence
University of Alicante, Spain

Abstract

Multisplittings of a matrix are used to generate parallel algorithms to approximate the
solutions of singular nonlinear algebraic systems. A class of parallel algorithms based
on the Newton method is defined where the Jacobian is singular. The parallel methods
are implemented on shared-memory parallel platforms using OpenMP. An application
to the Chandrasekhar H-equation is presented. An illustration and comparison of these
methods with their sequential versions is given. The speed-up on shared-memory
parallel computers is recorded, achieving significative values of speed-up.

Keywords: parallel computing, multisplitting, nonlinear system, singular system,
Newton method, Chandrasekhar H-equation

1 Introduction

Let F : Rn → Rn be a nonlinear mapping. Assume that x⋆ ∈ Rn is a solution of the
system

F (x⋆) = 0. (1)

1

Proceedings of the Seventh International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering

Edited by: P. Iványi, F. Magoulès and B.H.V. Topping
Civil-Comp Conferences, Volume 4, Paper 5.1

Civil-Comp Press, Edinburgh, United Kingdom, 2023
doi: 10.4203/ccc.4.5.1

Civil-Comp Ltd, Edinburgh, UK, 2023

If F ′(x⋆) is invertible and F ′ is Lipschitz continuous near x⋆, the sequence gener-
ated by the Newton method

xk+1 = xk − F ′(xk)−1F (xk), k = 0, 1, 2, . . . (2)

converges quadratically to x⋆ if the initial approximation, x0, is sufficiently near to
x⋆ [1]. If F ′(x⋆) is not invertible then the system (1) is singular and the solution x⋆ is
called a singular root. In this case the Newton method does not converge quadratically
to x⋆. Singular roots cause a number of problems in implementation of iterative meth-
ods and in general deteriorate the rate of convergence. The convergence in many such
situations [2, 3] has been proven to be linear if x0 is chosen near x⋆ and in a special
kind of region not containing any ball around x⋆. In [4] a modification of the Newton
method for singular systems is presented. This method is based in a two-step iteration
and is locally superlinearly convergent.

On the other hand, Newton iterative methods [1, 5] use an iterative method to ap-
proximate the solution of the linear system

F ′(xk)z = F (xk). (3)

In order to generate efficient algorithms to solve nonlinear systems (1) on a par-
allel computer, different authors [6–10] used the multisplitting technique [11–16] to
approximate the linear system (3).

In this study we present a class of parallel algorithms for the solution of singular
nonlinear systems based on the method introduced in [4]. The method is structured
in two main stages and at each stage a multisplitting algorithm is used. The computa-
tional performance analysis is evaluated using the metrics speedup and efficiency. The
results showed the good performance achieved in terms of speedup and efficiency.

The paper is organized as follows. In section 2 the formulation of the parallel
multisplitting algorithms is presented. Section 3 presents the results obtained for the
Chandrasekhar H-equation on two shared-memory multiprocessors. Section 4 con-
cludes the paper with some concluding remarks and future studies.

2 Methods

In this section we briefly overview the method introduced in [4] and present the for-
mulation of the new parallel methods.

The modified Newton algorithm suggested in [4] consists of two steps:
Given x0 ∈ Rn, for k = 0, 1, 2, . . .

• Step 1: vk = xk + ωk where ωk is the solution of the linear system

F ′(xk)ωk = −F (xk).

2

• Step 2: xk+1 = vk + (2 − C · ∥sk∥α)sk, where sk is the solution of the linear
system

F ′(vk)sk = −F (vk).

In order to approximate the solution of the linear systems by using parallel multi-
splitting methods, let us consider two multisplittings of F ′(x),

{M1,k(x), N1,k(x), E1,k}pk=1, (4)
{M2,k(x), N2,k(x), E2,k}pk=1. (5)

The parallel Newton algorithm consists of two main stages that can be structured
in four steps:

Given x0 ∈ Rn. For ℓ = 0, 1, 2, . . .

• Step 1: Solve the linear system

F ′(xℓ)ωℓ = −F (xℓ) (6)

in parallel using multisplitting (4), i.e., compute ωm1,ℓ performing m1,ℓ iterations
of the parallel iterative method determined by the multisplitting (4):

ωi = H1,ℓ(x
ℓ)ω(i−1) +B1,ℓ(x

ℓ)F (xℓ), i = 1, 2, . . . ,m1,ℓ,

with

H1,ℓ(x) =

p∑
k=1

E1,k

(
M−1

1,k (x)N1,k(x)
)
,

B1,ℓ(x) =

p∑
k=1

E1,k

(
M−1

1,k (x)N1,k(x)
)
M−1

1,k (x),

and ω0 = 0. Thus

ωm1,ℓ =

m1,ℓ−1∑
i=0

H i
1,ℓ(x

ℓ)B1,ℓ(x
ℓ)F (xℓ).

• Step 2: Compute vℓ = xℓ + ωm1,ℓ

• Step 3: Solve the linear system

F ′(vℓ)sℓ = −F (vℓ) (7)

in parallel using multisplitting (5), i.e., compute ωm2,ℓ performing m2,ℓ iterations
of the parallel iterative method determined by the multisplitting (5):

3

si = H2,ℓ(v
ℓ)s(i−1) +B1,ℓ(v

ℓ)F (vℓ), i = 1, 2, . . . ,m2,ℓ,

with

H2,ℓ(x) =

p∑
k=1

E2,k

(
M−1

2,k (x)N2,k(x)
)
,

B2,ℓ(x) =

p∑
k=1

E2,k

(
M−1

2,k (x)N2,k(x)
)
M−1

2,k (x),

and s0 = 0. Thus

sm2,ℓ =

m2,ℓ−1∑
i=0

H i
2,ℓ(v

ℓ)B2,ℓ(v
ℓ)F (vℓ).

• Step 4: Compute

xℓ+1 = vℓ + (2− C · ∥sm2,ℓ∥α)sm2,ℓ . (8)

3 Experiments

In this section we describe the experiments conducted. We consider the Chandrasekhar
H-equation [17] given by

F(H)(µ) = H(µ)−
(
1− ω

2

∫ 1

0

µH(ν) dν

µ+ ν

)−1

= 0. (9)

This equation is used to solve exit distribution problems in radiative transfer. F
is a map on C[0, 1], the Banach space of continuous functions on the interval [0, 1]
with the ∥ · ∥− norm. The unknown is a function H ∈ C[0, 1]; and ω ∈ [0, 1] is
a parameter. For ω = 1 this equation has a unique solution and there is a simple
fold singularity [18]. We discretized the equation with the composite midpoint rule.
Integrals on [0, 1] are approximated by

∫ 1

0

f(µ) dµ ≈ 1

N

N∑
j=1

f(µj), (10)

where µi = (i− 1/2)/N for i = 1, 2, . . . , N. The resulting discrete problem is

F (x)i = xi −

(
1− ω

2N

N∑
j=1

µixj

µi + µj

)−1

, i = 1, 2, . . . , N. (11)

4

In the experiments we considered the case ω = 1 where the Jacobian is singular
at the solution. The stopping criterion used was ∥F (xℓ)∥ < 10−9 and we have used
the L2− norm to compute ∥F (x)∥. We have considered the initial iterate x0 with all
components equal to one. In the experiments we considered the multisplittings given
by M1,k(x) = M2,k(x) = Diag(F (x)) which determine the Jacobi iterative method.
The linear systems (6) and (7) were solved performing m1,ℓ = m2,ℓ = ℓ iterations.
The results presented in this study were obtained with α = 0.3 in (8).

We have coded the parallel implementation of the algorithm on two shared-memory
machines using the Open Multi-Processing (OpenMP) [19]. Both the serial code and
parallel code were implemented in Fortran. The GNU Fortran (GCC) 8.5.0 was used.
We developed experiments on two multi-cores:

• Multi-core 1: A multi-core Intel Xeon CPU X5660 (12 cores), 2.8 GHz, with
48 GB RAM, under the operative system CentOS Linux version 7.

• Multi-core 2: A multi-core Intel Xeon CPU W-3245 (16 cores), 3.2 GHz, with
254 GB RAM, under the operative system CentOS Linux version 8.

To measure the parallel performance, the speed-up SP is computed as:

SP =
Tseq

TP

, (12)

where Tseq is the computation time of the sequential method and TP is the computation
time of the parallel algorithm. Table 1 shows the computational time for the systems of
size N = 1024 and N = 4096 on Multi-core 1, and Table 2 presents the corresponding
results on Multi-core 2. In all cases, terminating the iteration when ∥F (xℓ)∥ fell below
10−9, all the iterations in Tables 1 and 2 stopped at the same iteration, 419 for N =
1024 and 499 for N = 4096.

Number of
processors

1 2 4 6 8 12

N = 1024 1943.9 1158.1 572.5 401.7 297.8 205.5

N = 4096 169622.7 108731.2 54565.5 36774.2 27790.1 18997.2

Table 1: Computational time in seconds on Multi-core 1.

Figures 1, 2, 3 and 4 present the speed-up and efficiency for the systems of size
N = 1024 and N = 4096. Results show that the parallel method achieves speed-ups
in the range 8.93 to 9.46 (efficiencies in the range 74.40% to 78.81%) when the 12
cores of the Multi-core 1 are used, and in the range 13.17 to 13.25 (efficiencies in the
range 82.30% to 82.84%) when the 16 cores of Multi-core 2 are used.

5

Number of
processors

1 2 4 8 16

N = 1024 688.3 454.3 232.4 112.1 52.2

N = 4096 148514.7 92973.7 46435.5 22787.4 11204.9

Table 2: Computational time in seconds on Multi-core 2.

Sp
ee

d-
up

0

2

4

6

8

10

Number of processors
2 4 6 8 12

(a) Multi-core 1

Sp
ee

d-
up

0

2

4

6

8

10

12

14

Number of processors
2 4 8 16

(b) Multi-core 2

Figure 1: Speed-up on multi-cores; N = 1024.

(a) Multi-core 1

Effi
ci

en
cy

0,00 %

20,75 %

41,50 %

62,25 %

83,00 %

Number of processors
2 4 8 16

(b) Multi-core 2

Figure 2: Efficiency on multi-cores; N = 1024.

4 Conclusions

Parallel algorithms to solve singular nonlinear systems have been presented. These
algorithms are a modification of Newton method structured in two main stages. At
each stage a parallel multisplitting algorithm is used. The method has been imple-
mented on shared-memory multiprocessors using OpenMP. The implementation has

6

Sp
ee

d-
up

0

2

4

5

7

9

Number of processors
2 4 6 8 12

(a) Multi-core 1

Sp
ee

d-
up

0

2

4

6

8

10

12

14

Number of processors
2 4 8 16

(b) Multi-core 2

Figure 3: Speed-up on multi-cores; N = 4096.

Effi
ci

en
cy

0,00 %

19,75 %

39,50 %

59,25 %

79,00 %

Number of processors
2 4 6 8 12

(a) Multi-core 1

Effi
ci

en
cy

0,00 %

20,75 %

41,50 %

62,25 %

83,00 %

Number of processors
2 4 8 16

(b) Multi-core 2

Figure 4: Efficiency on multi-cores; N = 4096.

been used to solve the Chandrasekhar H-equation fixing the parameter that determines
a singular Jacobian. The experimental results show that the proposed parallel method
obtains significant speed-up values on two multi-cores where the implementation has
been tested. In future works we will analyze the convergence of these methods by con-
traction techniques. Moreover, different multisplittings will be considered and asyn-
chronous iterations will be analyzed. We will also implement the proposed method on
distributed memory machines using MPI.

Acknowledgements

This research was supported by the Spanish Ministry of Science and Innovation (Grant
PID2021-123627OB-C55) co-financed by FEDER funds.

7

References

[1] J. Ortega, W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics, 2000.

[2] A. Griewank, M.R. Osborne, “Newton’s Method for Singular Problems when
the Dimension of the Null Space is > 1”, SIAM Journal on Numerical Analysis,
18(1): 145–149, 1981.

[3] G.W. Reddien, “On Newton’s method for singular problems”, SIAM Journal on
Numerical Analysis, 15(5): 993–996, 1978.

[4] C.T. Kelley, R. Suresh, “A new acceleration method for Newton’s method at
singular points”, SIAM journal on numerical analysis, 20(5): 1001–1009, 1983.

[5] A.H. Sherman, “On Newton-iterative methods for the solution of systems of
nonlinear equations”, SIAM Journal on Numerical Analysis, 15(4): 755–771,
1978.

[6] R.E. White, “Parallel algorithms for nonlinear problems”, SIAM Journal on
Algebraic Discrete Methods, 7(1): 137–149, 1986.

[7] A. Frommer, “Parallel nonlinear multisplitting methods”, Numerische Mathe-
matik, 56: 269–282, 1989.

[8] J. Arnal, V. Migallón, J. Penadés, “Parallel Newton two-stage multisplitting
iterative methods for nonlinear systems”, BIT Numerical Mathematics, 43(5):
849–861, 2003.

[9] J. Arnal, V. Migallón, J. Penadés, “Non-stationary parallel multisplitting algo-
rithms for almost linear systems”, Numerical linear algebra with applications,
6(2): 79–92, 1999.

[10] T. Garcia, P. Spiteri, L. Ziane-Khodja, R. Couturier, “Solution of univalued and
multivalued pseudo-linear problems using parallel asynchronous multisplitting
methods combined with Krylov methods”, Advances in Engineering Software,
153: 102929, 2021.

[11] P. Spiteri, “Parallel asynchronous algorithms: A survey”, Advances in Engineer-
ing Software, 149: 102896, 2020.

[12] D.P. O’Leary, R.E. White, “Multi-Splittings of Matrices and Parallel Solution of
Linear Systems”, SIAM Journal on Algebraic Discrete Methods, 6(4): 630–640,
1985.

[13] G. Gbikpi-Benissan, F. Magoulès, “Asynchronous multisplitting-based primal
Schur method”, Journal of Computational and Applied Mathematics, 425:
115060, 2023.

[14] V. Partimbene, T. Garcia, P. Spiteri, P. Marthon, L. Ratsifandrihana, “Asyn-
chronous multi-splitting method for linear and pseudo-linear problems”, Ad-
vances in Engineering Software, 133: 76–95, 2019.

[15] D.B. Szyld, M.T. Jones, “Two-stage and multisplitting methods for the parallel
solution of linear systems”, SIAM Journal on Matrix Analysis and Applications,
13(2): 671–679, 1992.

[16] M.T. Jones, D.B. Szyld, “Two-stage multisplitting methods with overlapping

8

blocks”, Numerical linear algebra with applications, 3(2): 113–124, 1996.
[17] S. Chandrasekhar, Radiative transfer, Courier Corporation, 2013.
[18] H.B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Springer,

Berlin, 1987.
[19] L. Dagum, R. Menon, “OpenMP: An industry-standard API for shared-memory

programming”, Computing in Science & Engineering, 5(1): 46–55, 1998.

9

