
Avoiding Communication
in Two-Sided Krylov Subspace Methods

H. Liu1,2 and F. Magoulès3,4 and Q. Zou1,2

1School of Science, Beijing University of Posts and
Telecommunications, Beijing, China

2Key Laboratory of Mathematics and Information Networks
(Beijing University of Posts and Telecommunications),

Ministry of Education, China
3Université Paris-Saclay, CentraleSupélec, MICS,

Gif-sur-Yvette, France
4Faculty of Engineering and Information Technology,

University of Pécs, Pécs, Hungary

Abstract

Krylov subspace methods play an important role in solving large, sparse linear systems
in varieties of scientific fields. Specifically, their parallel variants are widely used in
engineering. Classical Krylov subspace methods in parallel scenarios usually require
many data communication between different processors per iteration which increases
runtime of the algorithms and create a performance bottleneck. Besides, the cost of
communication is much more expensive than the cost of computation on modern com-
puter architecture. Therefore, we present two communication-avoiding Krylov sub-
space methods, namely communication-avoiding quasi-minimal residual algorithm
(CA-QMR) and communication-avoiding transpose free quasi-minimal residual al-
gorithm (CA-TFQMR). In practical applications, we reduce the communication de-
mand to one data movement every O(s) iterations in the classical two-sided iterated
algorithms. Moreover, we have incorporated restart strategy into our algorithms which
significantly reduces storage requirements. Experimental results are presented to show

1

Proceedings of the Seventh International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering

Edited by: P. Iványi, F. Magoulès and B.H.V. Topping
Civil-Comp Conferences, Volume 4, Paper 3.3

Civil-Comp Press, Edinburgh, United Kingdom, 2023
doi: 10.4203/ccc.4.3.3

Civil-Comp Ltd, Edinburgh, UK, 2023

that our algorithms reduce communication consumption and the data storage within
the allowable range of convergence accuracy.

Keywords: quasi-minimal residual algorithm, communication-avoiding strategy, iter-
ative methods, parallel algorithms

1 Introduction

In the era of big data, the data amount increases sharply and the data structure becomes
more and more complicated. Confront with difficulty in data storage and processing,
parallel algorithms play a more important role in modern scientific and engineering
applications. The runtime of a parallel algorithm is decided by both computation and
communication. On the modern computer architectures, the cost of communication is
much more expensive than the cost of floating point operation [4]. Therefore, many
strategies have emerged to reduce the communication of parallel algorithms, such as
communication-avoiding (CA) [10], communication-hiding (Pipelined) [8] and low-
synchronization (LS) [9] algorithms. In what follows we mainly discuss the CA ap-
proaches.

In many situations, we need to calculate the solution of linear systems of the form:

Ax = b (1)

where A is an n×n nonsymmetric matrix and b ∈ Rn. Since the matrix is usually large
and sparse, Krylov subspaces methods (KSMs) is the most general and flexible choice.
In the majority of cases, the generalized minimal residual algorithm (GMRES) [11] is
the most successful solver. However, due to the work and storage growing, we have
to use restarts, which leads to slow convergence. The biconjugate gradient algorithm
(BCG) [12] and two modifications of BCG, namely CGS [6] and BiCGSTAB [13]
have been widely used. To converge smoothly, the quasi-minimal residual algorithm
(QMR) [2] was proposed. Later, a modification of QMR, namely TFQMR [7], have
been proposed.

All the algorithms we mentioned above require at least one sparse matrix-vector
multiplication (SpMV) and some vector operations in one iteration. These opera-
tions pose a huge demand for communication in the parallel algorithm. It limits
the performance of the algorithm. Therefore, the communication-avoiding gener-
alized minimal residual method (CA-GMRES) [10] was proposed. Then, Carson
et al. [1] proposed communication-avoiding biconjugate gradient (CA-BICG) and
communication-avoiding biconjugate gradient stabilized (CA-BICGSTAB) algorithms.

In this paper, we mainly focus on two-sided KSMs, which compute two Krylov

2

subspaces. Two-sided KSMs have better performance on sparse nonsymmetric lin-
ear systems [2]. Here, we focus on communication-avoiding quasi-minimal residual
(CA-QMR) and tranpose-free QMR (CA-TFQMR). These variants are mathemati-
cally equivalent to their original versions. However, their numerical behavior can be
much different.

2 Communication-avoiding QMR-like Algorithms

In this section we introduce the communication-avoiding variants of two-sided Krylov
Subspace Methods. As mentioned above, CA-BICG and CA-BICGSTAB have be
successfully formulated by Carson et al. [1]. Here we mainly focus on the QMR and
CGS variants.

2.1 Communication-avoiding QMR Algorithm

Our core idea towards communication-avoiding QMR algorithm is to convert QMR
(Algorithm 1) to an s-step method.

Algorithm 1 QMR

1: Compute r0 = b− Ax0 and γ0 := ∥r0∥2, w0 := v0 := r0/γ0
2: for m = 0, . . . , until convergence do
3: Compute αm, δm+1 and vm+1, wm+1 as in Lanczos Biorthogonalization
4: Update the QR factorization of Tm

5: Apply rotation Ωm, to last column of Tm and to gm
6: pm = (vm −

∑m−1
i=m−2 timpi)/tmm

7: xm = xm−1 + γmpm
8: end for

Consider the biorthogonal bases for the Krylov subspaces

Ks(A, v0) := span{v0, Av0, . . . , As−1v0}
Ks(A

T , w0) := span{w0, A
Tw0, . . . , (A

T)s−1w0}

where v0, w0 are arbitrary vectors satisfying (v0, w0) ̸= 0. Nothen, we rewrite the
above Krylov subspaces into

Ks(A, v0) = span(Vs), Vs := [ρ0(A)v0, ρ1(A)v0, . . . , ρs−1(A)v0] (2)

Ks(A
T , w0) = span(Ws), Ws := [ρ0(A

T)w0, ρ1(A
T)w0, . . . , ρs−1(A

T)w0] (3)

where ρj(z) is a polynomial of degree j, satisfying three-term recurrence

ρ0(z) := 1, ρ1(z) := (z − α0)ρ0(z)/γ0 (4)
ρj(z) := ((z − αj−1)ρj−1(z)− βj−2ρj−2(z))/γj−1 (5)

3

Besides, there exist (s+ 1)× s matrices T 1
s+1, T

2
s+1:

T 1
s+1 :=

α1
0 β1

0

γ1
0 α1

1
. . .

γ1
1

. . . β1
s−2

. . . α1
s−1

γ1
s−1

 , T 2
s+1 :=

α2
0 β2

0

γ2
0 α2

1
. . .

γ2
1

. . . β2
s−2

. . . α2
s−1

γ2
s−1

which satisfy:

AVs = Vs+1T
1
s+1, A

TWs = Ws+1T
2
s+1 (6)

Using the Krylov matrices (2)–(3), we represent components of the QMR iterates
in the Krylov bases. We define ṽj, w̃j to represent the vectors generated by QMR, and
introduce vectors {aj, cj} each of length s to represent vectors {ṽj, w̃j} such that

ṽj := Vsaj, w̃j := Wscj (7)

where
a0 := [1, 01,s−1]

T , c0 := [1, 01,s−1]
T (8)

Then, for 0 ≤ j ≤ s, the update process (line 3) in Algorithm 1 becomes

αj := (Aṽj, w̃j) := (Vs+1T
1
s+1aj,Wscj) (9)

ṽj+1 := Aṽj − αj ṽj − βj ṽj−1 := Vs+1T
1
s+1aj − αjVsaj − βjVsaj−1 (10)

w̃j+1 := AT w̃j − αjw̃j − βjw̃j−1 := Ws+1T
2
s+1cj − αjWscj − βjWscj−1 (11)

βj+1 := (ṽj+1, w̃j+1) (12)

Combining with (6), we can see that (8)–(10) can be rewritten as

αj := (W T
s Vs+1T

1
s+1aj, cj) (13)

[aTj+1, 0] := T 1
s+1aj − αj[a

T
j , 0]− βj[a

T
j−1, 0] (14)

[cTj+1, 0] := T 2
s+1cj − αj[c

T
j , 0]− βj[c

T
j−1, 0] (15)

βj+1 := (W T
s+1Vs+1[a

T
j+1, 0], [c

T
j+1, 0]) (16)

We compute the dot products in a new iteration, using the Gram-like matrix

G := W T
s+1Vs+1 (17)

where G is an (s+ 1)× s+ 1 matrix. Moreover, due to the the properties of Vs+1 and
Ws+1, the product W T

s Vs+1 used in (12) is equivalent to G1:s,1:s+1. Here, G1:s,1:s+1

represents the first s rows and first s+ 1 columns of the matrix G.

4

Now, we can assemble the CA-QMR components from (3)–(5) and (12)–(16) into
Algorithm 2.

Algorithm 2 CA-QMR

1: Compute r0 = b− Ax0 and γ0 := ∥r0∥2, w0 := v0 := r0/γ0
2: for m = 0, s, 2s, . . . until convergence do
3: Compute Vs+1,Ws+1 according to (3)-(4)
4: Compute T 1

s+1, T
2
s+1 according to (5)

5: Compute G accoding to (16)
6: Initialize a0, c0 according to (7)
7: for j = 0, . . . , s− 1 do
8: αj := (G1:s,1:s+1T

1
s+1aj, cj)

9: [aTj+1, 0] := T 1
s+1aj − αj[a

T
j , 0]− βj[a

T
j−1, 0]

10: [cTj+1, 0] := T 2
s+1cj − αj[c

T
j , 0]− βj[c

T
j−1, 0]

11: βj+1 := (G[aTj+1, 0], [c
T
j+1, 0])

12: aj+1 = aj+1/βj+1

13: cj+1 = cj+1/βj+1

14: Hj+1 :=

α0 β1

β1 α1
. . .

β2
. . . βj

. . . αj

βj+1

15: Apply Ωi, i = j − 2, j − 1 to j-th column of Hj+1

16: Compute c′j =
hj,j√

h2
j,j+h2

j+1,j

, s′j =
hj+1,j√

h2
j,j+h2

j+1,j

17: γj+1 := −s′jγj
18: γj := c′jγk
19: αj := c′jαj + βj+1s

′
j

20: pj = (Vsaj −
∑j−1

i=j−2 hi,jpi)/hj,j

21: xj = xj−1 + γjpj
22: end for
23: Recover iterates xm+s, vm+s, wm+s

24: end for

2.2 Communication-avoiding CGS Algorithm

Based on the strategy above, we can also convert the CGS algorithm [6] to a communication-
avoiding version. It is well known that CGS is the basis for many Krylov subspace
methods. Here we can see that using the above techniques we can give a similar
formulation for avoiding communications.

5

Algorithm 3 CGS
1: Compute r0 := b− Ax0;r∗0 arbitrary
2: p0 := u0 := r0
3: for j = 0, 1, 2, . . . , until convergence do
4: αj = (rj, r

∗
0)/(Apj, r

∗
0)

5: qj = uj − αjApj
6: xj+1 = xj + αj(uj + qj)
7: rj+1 = rj − αjA(uj + qj)
8: βj = (rj+1, r

∗
0)/(rj, r

∗
0)

9: uj+1 = rj+1 + βjqj
10: pj+1 = uj+1 + βj(qj + βjpj)
11: end for

Consider the CGS algorithm, shown in Algorithm 3. We can represent the compo-
nents of the CGS iterates by the Krylov bases. Define

K2s+1(A, p0) = span(P2s+1), K2s(A, r0) = span(R2s) (18)

Let Tj+1 be the form of (6). We have

AP2s = P2s+1T2s+1, AR2s−1 = R2sT2s (19)

Using the Krylov matrices, we represent components of the CGS iterates in the Krylov
bases. We introduce vectors {aj, cj, ej,mj, nj} each of length 4s + 1 to represent
vectors {pj, rj, xj, qj, uj}

pj := [P2s+1, R2s]aj, rj := [P2s+1, R2s]cj (20)
qj := [P2s+1, R2s]mj, uj := [P2s+1, R2s]nj (21)

xj := [P2s+1, R2s]ej (22)

where

a0 := [1, 01,4s]
T , c0 := [01,2s+1, 1, 01,2s−1]

T (23)

n0 := [01,2s+1, 1, 01,2s−1]
T , e0 := [01,4s+1]

T (24)

On the other hand, we have

A[pj, rj] = [P2s+1, R2s]T
′[aj, cj] (25)

where

T ′ =

[
[T2s+102s+1,1]

[T2s02s,1]

]
(26)

Moreover, we use again the Gram-like matrix

g := [P2s+1, R2s]
T r∗0 (27)

6

Similarly to the CA-QMR algorithm, we can assemble the CA-CGS components
into Algorithm 4.

Algorithm 4 CA-CGS
1: Compute r0 = b− Ax0;r∗0 arbitrary
2: for m = 0, s, 2s, . . . until convergence do
3: Compute P2s+1, R2s according to (18)
4: Compute T ′ according to (10) and (26)
5: Compute G and g accoding to (27)
6: Initialize a0, c0,m0, e0 according to (24)
7: for j = 0, . . . , s− 1 do
8: αj := βj/(T

′aj, g)
9: mj := nj − αjT

′aj
10: ej+1 := ej + αj(mj + nj)
11: cj+1 := cj − αjT

′(mj + nj)
12: βj := (cj+1, g)/(cj, g)
13: nj+1 = cj+1 + βjmj

14: aj+1 = cj+1/βj(mj + βjaj)
15: end for
16: Recover iterates pm+s, rm+s, xm+s

17: end for

We can see that CA-QMR and CA-CGS are mathematically equivalent to their orig-
inal counterparts. Using similar techniques, we can further develop communication-
avoiding transpose free quasi-minimal residual (CA-TFQMR) method and other gen-
eralizations. Note that theoretically these algorithms can be somewhat less stable than
the traditional version. In practice we expect that the gain in communication cost can
be greater than their stability drawback.

3 Numerical Experiments

In this section, we use 4-CAQMR to represent CA-QMR (Algorithm 2) where the step
size s is chosen as 4. All the initial guess is a zero vector and the matrices are extracted
from the Matrix Market repository (https://math.nist.gov/MatrixMarket/).

Figure 1 illustrates the convergence behavior of CA-QMR with different step sizes.
We find that the CA-QMR results are competitive with the classical algorithm. The
accuracy of CA-QMR with different step sizes is close to that of QMR when the
condition number is not large. From this result, we can almost sure that in parallel
environment the new algorithm can be much more efficient than the traditional version.

7

0 5 10 15 20 25 30
iteration

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

−2.8

re
sid
ua
l (
lo
g
vi
e
)

16-CAQMR
QMR
8-CAQMR
4-CAQMR

Figure 1: The size of the test matrix if 216 × 216 with 4374 nonzero entries. The
estimated condition number is 6.5× 104.

Condition Number QMR 4-CAQMR 8-CAQMR 16-CAQMR
1.7e+04 2.3989e-12 4.3632e-11 2.3758e-11 1.4994e-11
1.4e+07 2.9339e-09 1.2507e-08 5.7247e-09 4.0081e-09
1.2e+08 2.5459e-08 2.5357e-07 1.0359e-07 5.8758e-08

Table 1: Algorithm convergence accuracy under different condition numbers.

Table 1 illustrates more results about QMR and their communication-avoiding vari-
ants, from which we can find that the step size of CA-QMR does affect the conver-
gence accuracy.

4 Future work and conclusions

In this paper, we investigate communication-avoiding two-sided Krylov subspace meth-
ods. In particular, CA-QMR and CA-CGS have been discussed in details. Numerical
experiments confirm the effectiveness our communication-avoiding variants. We can
see from both theoretical and experimental points that CA-QMR is promising, which

8

has similar stability behavior to QMR while reducing the communication cost to one
data movement per O(s) iterations. Practically we have to carefully design the paral-
lel implementation of the communication-avoiding algorithms, including the SpMV
operations, data movement, and some low-level optimizations. In theory, however,
such strategy does improve numerical performance of Krylov methods. Future re-
search may focus on communication-avoiding transpose-free QMR algorithm and the
restart strategy. Other acceleration strategies, such as mixed precision and randomiza-
tion, as well as efficient parallel implementation are also interesting, and thus could
be embedded into this work as future plans.

Acknowledgements

This work was partly funded by National Natural Science Foundation of China under
grant numbers 12101071, 12171051 and 12171052, and partly funded by the French
National Research Agency as part of project ADOM, under grant number ANR-18-
CE46-0008.

References
[1] E. Carson, N. Knight, J. Demmel, Avoiding communication in nonsymmetric

lanczos-based Krylov subspace methods, SIAM Journal on Scientific Computing
35 (5) (2013) S42–S61.

[2] R. W. Freund, N. M. Nachtigal, QMR: a quasi-minimal residual method for non-
Hermitian linear systems, Numerische Mathematik 60 (1) (1991) 315–339.

[3] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM,
Philadelphia, PA, 2003.

[4] E. C. Carson, Z. Strakoš, On the cost of iterative computations, Philos. Trans. R.
Soc. A 378 (2166) (2020) 20190050.

[5] Y. Saad, Numerical methods for large eigenvalue problems: revised edition,
SIAM, 2011.

[6] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems,
SIAM journal on scientific and statistical computing 10 (1) (1989) 36–52.

[7] R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-
Hermitian linear systems, SIAM journal on scientific computing 14 (2) (1993)
470–482.

[8] P. Ghysels, T. J. Ashby, K. Meerbergen, W. Vanroose, Hiding global communi-
cation latency in the GMRES algorithm on massively parallel machines, SIAM
journal on scientific computing 35 (1) (2013) C48–C71.

[9] K. Świrydowicz, J. Langou, S. Ananthan, U. Yang, S. Thomas, Low synchro-
nization Gram–Schmidt and generalized minimal residual algorithms, Numeri-
cal Linear Algebra with Applications 28 (2) (2021) e2343.

[10] M. Hoemmen, Communication-avoiding Krylov subspace methods, University
of California, Berkeley, 2010.

9

[11] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM Journal on scientific and statistical
computing 7 (3) (1986) 856–869.

[12] C. Lanczos, Solution of systems of linear equations by minimized iterations, J.
Res. Nat. Bur. Standards 49 (1) (1952) 33–53.

[13] H. A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems, SIAM Journal on scientific
and Statistical Computing 13 (2) (1992) 631–644.

10

