
1

Abstract

This paper presents a domain decomposition framework with self-registering and
reusable subdomains for finite element (FE) applications. The framework enhances
traditional FE applications written in Python by automatically decomposing the
system into subdomains and enabling the storage and reuse of existing subdomain
solutions, significantly reducing the computational time for systems with minor
changes. The proposed framework is evaluated through a solid mechanics application
to assess its contribution to the analysis speed.

Keywords: domain decomposition, finite element method, Python, autosaving
strategy, domain hash.

1 Introduction

Domain decomposition methods have gained popularity in finite element (FE)
analysis due to their suitability for parallel computing and their ability to efficiently
store and reuse subdomain solutions. By dividing the boundary value problem into
smaller boundary value problems in subdomains, these methods facilitate parallel
processing on different CPUs and provide the flexibility to implement existing
subdomain solutions for systems with minor changes, thereby saving considerable
computational time [1].

Automated Persistence of Subdomain Calculations
in Finite Element Domain Decomposition

I. Kucuk1 and M. Yilmaz2

1 Graduate School, Istanbul Technical University Istanbul,

Turkey
2Department of Civil Engineering, Istanbul Technical University

Istanbul, Turkey

Proceedings of the Seventh International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering

Edited by: P. Iványi, F. Magoulès and B.H.V. Topping
Civil-Comp Conferences, Volume 4, Paper 2.1

Civil-Comp Press, Edinburgh, United Kingdom, 2023
doi: 10.4203/ccc.4.2.1

Civil-Comp Ltd, Edinburgh, UK, 2023

2

The concept of domain decomposition can be traced back to the seminal work of
[2], who introduced the idea of overlapping subdomains to solve elliptic partial
differential equations. H.A. Schwarz's alternating method laid the foundation for later
developments in domain decomposition techniques, such as the additive and
multiplicative Schwarz methods [3 and 4]. These methods have since been adapted to
various applications, including fluid dynamics, structural mechanics, and
electromagnetics [5 and 6].

With the advent of high-performance computing, domain decomposition methods

have been widely used to leverage the power of parallel computing architectures. By
dividing the global problem into smaller, independent subproblems, these techniques
allow for concurrent execution on multiple processors, leading to significant
reductions in computation time [7]. Parallel domain decomposition methods can be
broadly categorized into two classes: overlapping methods, where subdomains share
common nodes or elements, and non-overlapping methods, which involve the
partitioning of the original domain into disjoint subdomains [5]. Recent advancements
in domain decomposition methods have focused on enhancing the parallelization
capabilities and improving the reuse of subdomain solutions [8 and 9].

Domain decomposition techniques have also been employed as preconditioners to
enhance the convergence of iterative solvers for linear systems arising from FE
discretization [10 and 11]. Preconditioning involves transforming the original linear
system to accelerate the convergence of iterative methods, and domain
decomposition-based preconditioners have been shown to be particularly effective for
large-scale problems [6]. Various software frameworks have been developed to
facilitate the implementation of domain decomposition methods for parallel
computing [12 and 13]. These frameworks typically provide a high-level abstraction
of the underlying parallelism and allow users to focus on the mathematical
formulation of their problems.

While there is a not a direct study that specifically focuses on saving and reusing

subdomain solutions (as far as the authors know), several studies and implementations
indirectly address this concept or incorporate similar ideas. [14] presented a parallel
FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) method for
adaptively refined finite element meshes. While the primary focus is on the adaptive
mesh refinement and the efficient parallelization of the FETI-DP method, the concept
of reusing subdomain solutions is implicitly considered when the mesh is refined
locally, and the previous subdomain solutions can be used as initial guesses for the
iterative solver. [15] presented an adaptive multilevel method for high-order finite
element methods conforming to H1 and H(curl) spaces. The method focuses on local
mesh refinement and local smoothing techniques to improve the convergence of
iterative solvers. Although these studies do not concentrate specifically on saving and
reusing subdomain solutions, they involve concepts such as local mesh refinement
and adaptive parallel methods that implicitly require the reuse of subdomain solutions.
Incorporating the saving and reusing of subdomain solutions into these methods and
frameworks could lead to further computational efficiency improvements [16].

3

The proposed domain decomposition framework interfaces with traditional FE
applications written in Python by adding a few straightforward definitions to the end-
user code. Automatic decomposition of the system into subdomains, registration, and
reuse of subdomain solutions are performed within the framework.

To register and reuse subdomain solutions, a unique hash string representing the

corresponding subdomain is created. This involves traversing all properties of
individual items that constitute the subdomain, such as element and node properties
and boundary conditions. Special Python decorators have been developed to allow the
end-user to introduce variables of the functions in the end-user code to the
decomposition framework. This streamlines the process of registering and reusing
subdomain solutions. Standard components that automatically decompose end-user-
defined FE objects into subdomains are also presented within the scope of the study.

The proposed framework is evaluated using a sample solid mechanics application

to determine its contribution to the analysis speed. The evaluation demonstrates the
potential benefits of the framework in terms of computational efficiency, particularly
for systems with minor changes that do not require a complete rework of the problem.
In this context, the proposed framework's ability to store and reuse subdomain
solutions can be seen as an extension of the preconditioning concept, allowing for
further improvements in computational efficiency.

An outline of the study is described as follows. Section 2 discusses general

formulations of domain decomposition. In Section 3, autosaving subdomain solutions
is investigated. Section 4 offers an illustrative FE implementation using the proposed
framework and Section 5 evaluates the speed benchmarks for the given example. The
paper concludes with a discussion of the presented approach in Section 6.

2 Domain Decomposition

A non-overlapping Domain Decomposition Method is used. The assumed linear
Finite Element Analyses (FEA) model is given in Equation (1).

 []K   U B S P (1)

In the model, []K is the Stiffness Matrix, U is the Degree of Freedom Vector, B

and S are the external body force vector and external surface load vectors
respectively, and P is the nodal force vector. Depending on the characteristics of the
system to be calculated, there may be some additional external load vectors outside of
and (e.g., temperature difference load vector or prestress load vector). However,
within the scope of this study, it will be accepted that the right-hand side of the
equation is only in the presented form.

4

Figure 1: Subdomains and master interface (bold lines + nodes with Dirichlet
boundary conditions). P: concentrated forces, s: surface forces, b: body forces.

The first step of the domain decomposition is to decompose the problem domain

into subdomains s as depicted in Figure 1. Doing so reveals interface nodes (bold

lines in the figure) which is called the master interface. In the second step, all
subdomain equations are expressed in terms of two different variable groups as;

 11 12 1

21 22 2

s s s s s

s s s s s

K K

K K
 

 

       
       

       

u q P

u q P
 (2)

where, s

u represents the inner DOFs and s
u is the interface DOFs of the

subdomain s . Note that, body and surface force vectors are also expressed as
 q B S for convenience. In the third step, Equation (2) is written in its open form

as follows;
 11 12 1

s s s s s sK K    u u q P (3)

 21 22 2
s s s s s sK K    u u q P (4)

Inner DOFs (s
u) can be eliminated with the help of Equation (5).

  1

11 1 12
s s s s s sK K



      u q P u (5)

The resulting subdomain composition is obtained in the form of Equation (6).

  1 1

22 21 11 12 2 21 11 1
s s s s s s s s s s sK K K K K K

 

  
             

u q q P P (6)

Equation (6) can be written in compact form as;

5

 s s s sK    u q P (7)

where the following definitions hold.

  1 1

22 21 11 12 2 21 11 1,s s s s s s s s s s sK K K K K K K
 

  
             

q q q P (8)

3 Decomposition and Autosaving Subdomain Solutions

The process involves identifying subdomains within the main domain from an
existing FE implementation. The classes included within the decomposition
framework is summarized as follows.

 Container: Provided with the user-defined nodes and elements, this class
creates the subdomains with an effective partitioning strategy while upgrading
the given node and element with proper properties and methods to support for
the decomposition with autosaving capabilities.

 Decompose: This class performs decomposition operations on the detected

subdomains. These operations include;
o Identification of the degree of freedoms for both the master interface

and the corresponding subdomains.
o Generating and solving the master interface equation of the system.

 Subdomain: This class performs subdomain equations. Basic functionality of

the class is;
o Generating hash string for the subdomains.
o Constructing subdomain equations based on Equation (7).
o Saving and retrieving back the relevant element and node matrices

defined in Equation (8).

 hashify: A Python decorator that is designed to allow users to customize the
hashing process for their user-defined functions.

The “Container” class is using a common strategy in computational geometry
called spatial partitioning, specifically a technique called a quadtree [17, 18, 19 and
20], which is used to partition a space to make operations like search, insertion,
deletion more efficient. The decision on how to split the domain is based on the
geometry (length and width) of the domain. Container class is being used to group
nodes or points in a certain spatial domain. Figure 2. demonstrates an example
subdomain division performed by the Container class.

6

Figure 2: Example subdomain creation for a 2D plane stress mesh with 4 node
quadrilateral elements. (Node Count: 6590, Element Count: 6252).

The "Decompose" class creates subdomain objects based on element groups
provided by the Container. The pseudo-implementation of the Decompose class is
demonstrated in Figure 3. The "solve" method is a function within the "Decompose"
class that is designed to solve the master interface equations (see Equation (7)).

class Decompose:
 def __init__(self, nodes, elements, maxPointCount):
 - Creates the container object.
 #self.container=Container(nodes=nodes,elements=elements,maxPointCount)
 - Determines Node and Element groups that is marked by the container object.
 - Create subdomain objects based on element groups.
 def solve(self):
 # Solve the master interface equations by requesting subdomain methods (see Figure 4).

Figure 3: Pseudo-implementation of the Decompose Class.

The “Subdomain” class identifies the inner nodes and the master interface nodes

from the given element group, the latter being the boundary nodes that connect with
other subdomains. The class includes several methods, each of which calculates a
different aspect of the subdomain's properties, while utilizing a caching system based
on hash lists to improve performance. If there's no change in the hash of the
subdomain, indicating no alterations, these methods retrieve previously computed
solutions, saving computational time. The pseudo-implementation of the Subdomain
class is demonstrated in Figure 4.

7

class Subdomain:
 def __init__(self, elements):
 - Determine inner-nodes and master-interface-nodes of the corresponding element group.
 # The methods outlined below utilize hash lists provided by the end-user to detect any
alterations in the subdomain. These methods also store their returns based on the generated hash.
If there's a change in the hash, they will recalculate the subdomain matrices. Otherwise, they'll
retrieve the solutions from previously computed ones.
 def get_K_Sparse: # Assembled Element Stiffness Matrix of the subdomain (see Eq. (1)).
 def get_K_Subdomain: # Condansated Subdomain Stiffness Matrix (see Eq. (7))
 def get_B_Subdomain: # Body forces vector of the subdomain elements (see Eq. (1)).
 def get_S_Subdomain: # Surface forces vector of the subdomain elements (see Eq. (1)).
 def get_P_Subdomain: # Concentrated forces vector of the subdomain elements (see Eq. (1)).

Figure 4: Pseudo-implementation of the Subdomain Class.

Lastly, the hashify class has been formulated as a Python decorator, aimed at

empowering the end-user to discern the dependent variables associated with any field
function (FE matrices and vectors) that they've integrated into their FE framework.
An exemplification of the application of the decorator is provided in the subsequent
chapter. The actual implementation of the class is demonstrated in Figure 5.

class hashify:
 def __init__(self, target, hash):
 self.target = target # Registering target function name
 self.hash_list_function = hash # Resigtering function dependency (variables) list

 def get_values_to_hash(self, elm):
 # Returning hashable type (tuple) of the dependency list
 return tuple(self. hash_list_function(elm))

 def __call__(self, original):
 # Registering self to the decorated function (to be reached by the Subdomain)
 original._hashify_ = self
 return original

Figure 5: Implementation of the hashify Class as a Python Decorator.

4 Example Implementation

In this section, a demonstrative application of the proposed decomposition
framework to plane stress problem will be presented. The effects of the Autosaving
feature on the solution times of the problems will be examined. A typical
implementation of a FE plane stress problem is given in Figure 6 and in Figure 7 with
node and element implementations respectively.

8

nodes = dict()
class Node:
 def __init__(node, id, X, Y):
 node.id = id
 node.X, node.Y = X, Y # Coordinates
 node.rest = [0, 0] # Support Conditions [0: free, 1: fixed]
 node.force = [0, 0] # Concentrated Loads [Px, Py]
 node.disp = [0, 0] # Support Settlements
 node.code = [-1, -1] # Degree of Freedom Numbers
 nodes[id] = node # Saving node to a dictionary

 # "hash_by" returns a list of variables to be used in hashing the corresponding node object.
 def hash_by(node):
 return [*node.rest, *node.force, *node.disp]

Figure 6: An example user-defined Node class definition of the plane-stress element

along with the implementation of the hash_by method.

As shown with the example, the proposed decomposition framework can detect all
dependencies of the methods that form the finite element equations for the nodes and
elements via user-defined hashify functions that returns the list of dependencies of the
corresponding methods. Therefore, the framework can discern whether there are any
changes in the equations for subdomains containing these elements, by combining the
hash functions of the elements related to the subregions into a single hash. As can be
understood from the example application, the additional interface required for the
proposed decomposition framework has been designed to impose a minimum cost on
the end-user in terms of coding effort.

5 Results

Table 1. presents data on how the autosave feature impacts the solution time in
different decomposition states. Specifically, investigates the effect of changing system
parameters such as the Stiffness Matrix ([K]), B, S, and P across different subdomains.

The considered cases are as follows.

Case 0: A second solution after autosave without any change in the system.
Case 1: A second solution with Stiffness Matrix changed in all subdomains.
Case 2: A second solution with B, S, P changed in all subdomains.
Case 3: A second solution with Stiffness Matrix changed in a single subdomain.
Case 4: A second solution with only P changed in a single subdomain.

9

elements = dict()
class Element:
 def __init__(elm, id, conn, E, p, h):
 elm.id = id
 elm.conn = [nodes[id] for id in conn] # Connectivity Vector
 elm.E = E # Elasticity Modulus
 elm.p = p # Poisson’s Ratio
 elm.h = h # Thickness
 elm.boundaryForce = [[0] * 4]*2 # Boundary Forces (4 surface, 2 components).
 elm.volumeForce = [0, 0] # Volume forces [bx, by]
 elements[id] = elm # Saving element to a dictionary.

 … # Classical definitions related to finite elements (for example, material matrix, coordinate
vector, Jacobian, etc. These definitions have not been included in the code as they are not directly
related to the subject of the study).

 @hashify(target= “K”, hash=lambda elm: [elm.E, elm.p, elm.h,
 *[(n.X, n.Y, *n.rest) for n in elm.conn]])
 def K(elm): # Element Stiffness Matrix (8x8). Decorated with hashify.
 def dK(r, s):
 h = elm.h # Thickness
 C = elm.C() # Constitutive (material) matrix (depens on E and p)
 BM = elm.BM(r, s) # Strain-displacement matrix (depends on node coordinates).
 J = elm.detJM(r, s) # Jacobian Matrix (depends on node corrdinates)
 return h * BM.T @ C @ BM * J
 return IntegrateOn2DDomainWithGaussN2(dK)

 @hashify(target= “B”, hash=lambda elm: [*elm.volumeForce,
 *[(n.X, n.Y, *n.rest) for n in elm.conn]])
 def B(elm): # Element body-force (volume-force) vector (8x1). Decorated with hashify.
 def dB(r, s):
 bx, by = elm.volumeForce
 h = elm.h # Thickness
 J = elm.detJM(r, s) # Jacobian Matrix (depends on node corrdinates)
 SFV = SF(r, s) # Shape functions (Shape function Vector)
 SF8 = np.concatenate((SFV, SFV))
 return h * J * SF8 * [bx, bx, bx, bx, by, by, by, by]
 return IntegrateOn2DDomainWithGaussN2(dB)

 @hashify(target= “S”, hash=lambda elm: [*elm.boundaryForce,
 *[(n.X, n.Y, *n.rest) for n in elm.conn]])
 def S(elm): # Element boundary-surface external load vector (8x1). Decorated with hashify.
 def dS(r, s, k):
 qx, qy = elm.boundaryForce[0][k], elm.boundaryForce[1][k]
 SFV = SF(r, s) # Shape functions (Shape function Vector)
 # … calculations continue.
 return J * np.concatenate((SFV * qx, SFV * qy))
 return IntegrateOn2DBoundariesWithGaussN2(dS)

Figure 7: An example user-defined Element class definition of the plane-stress
element with hashify functions defined on the top of element matrix and element

vector definitions.

10

Single Domain: DOF Count: 51102
Solution time without decomposition: 7.926 sec

Subdomain
Count

Master
Interface

DOF
Count

First
Solution

Time
(sec)

Case 0
Time
(sec)

Case 1
Time
(sec)

Case 2
Time
(sec)

Case 3
Time
(sec)

Case 4
Time
(sec)

2 306 8.657 0.671 7.239 6.137 4.054 0.777
3 408 8.807 0.699 7.408 6.183 4.016 0.825
4 510 8.909 0.703 7.855 6.254 2.134 0.808
8 918 9.168 0.796 7.945 6.586 1.301 0.915
14 1530 9.837 0.891 8.007 6.841 1.356 1.012
27 2454 10.110 1.050 8.663 7.668 1.548 1.169

Table 1: The impact of the autosave feature on solution time for different
decomposition states.

As the number of subdomains increases, so does the initial solution time and the

time for each case. This suggests that more complex systems (with more subdomains)
take longer to solve. The solution times in Case 0 (autosave feature with no changes)
are significantly less than the initial solution times, indicating that the autosave feature
has a considerable positive effect on reducing solution time when no changes are made
to the system. While this case (Case 0) might not always seem particularly valuable,
it can indeed be useful under certain circumstances. For instance, if there is a need to
replicate the solution on a different machine, this benchmark time provides a practical
reference.

The data implies that localized changes in a single subdomain, as in Cases 3 and 4,

significantly reduce solution times and improve system efficiency. Conversely,
system-wide changes, as in Cases 1 and 2, don't noticeably enhance solution times,
suggesting that they are less efficient than localized changes.

6 Conclusions and Contributions

The presented domain decomposition framework with autosaving of subdomain
solutions offers significant advantages for finite element analysis applications. By
facilitating the automatic decomposition of the system into subdomains and enabling
the storage and reuse of existing subdomain solutions, the framework substantially
reduces computational time and enhances the overall efficiency of the analysis
process. The autosave feature dramatically enhances computation speed (up to
tenfold) when system changes are localized. This feature might be strategically
leveraged in scenarios where system alterations can be restricted to a single
subdomain, leading to significant efficiency gains. Given the generality of the
methods employed, future investigations could explore expanding this framework to
accommodate applications beyond the realm of FE. In essence, any computational
process involving grouped calculations could potentially benefit from the presented
approach.

11

Acknowledgement

This study was carried out within the scope of an ongoing master's thesis conducted
by the first author at Istanbul Technical University Graduate School and under the
supervision of the second author.

References

[1] G.P. Nikishkov, “Basics of the domain decomposition method for finite element
analysis. Mesh Partitioning Techniques and Domain Decomposition Methods,
Editor: Magoulés, F., Saxe-Coburg Publications, Kippen, Stirling, 119-142,
2007.

[2] H.A. Schwarz, "Über einen Grenzübergang durch Alternierendes Verfahren",
Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15, 272-286,
1870.

[3] P.L. Lions, "On the Schwarz Alternating Method III: A Variant for
Nonoverlapping Subdomains", in Third International Symposium on Domain
Decomposition Methods for Partial Differential Equations, Philadelphia, PA,
SIAM, 202-223, 1988.

[4] M. Dryja and O.B. Widlund, "An Additive Variant of the Schwarz Alternating
Method for the Case of Many Subregions," Technical Report 339, Department
of Computer Science, Courant Institute of Mathematical Sciences, New York
University, 1987.

[5] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial
Differential Equations. Oxford University Press, 1999.

[6] A. Toselli and O. Widlund, Domain Decomposition Methods—Algorithms and
Theory, Springer Series in Computational Mathematics, vol. 34, Springer-
Verlag, 2005.

[7] B.F. Smith, P.E. Bjørstad, and W.D. Gropp, Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cambridge
University Press, 1996.

[8] J. Mandel, C.R. Dohrmann, and R. Tezaur, "An algebraic theory for primal and
dual substructuring methods by constraints," Appl. Numer. Math., 113, 224-
238, 2017.

[9] M.J. Gander and L. Halpern, "Schwarz methods: To share or not to share?" in
C. Farhat, X. Cai, and F. Magoulès, editors, Domain Decomposition Methods
in Science and Engineering XXIV, vol. 125, Lecture Notes in Computational
Science and Engineering, Springer, 209-217, 2018.

[10] P.E. Bjørstad and O. B. Widlund, "Iterative Methods for the Solution of Elliptic
Problems on Regions Partitioned into Substructures," SIAM Journal on
Numerical Analysis, 23/6, 1093-1120, 1986.

[11] J.H. Bramble, J. E. Pasciak, and J. Xu, "Parallel Multilevel Preconditioners,"
Mathematics of Computation, 55/ 191, 1-22, 1990.

[12] W. Gropp, D. Kaushik, D. Keyes, and B. Smith, "Toward realistic performance
bounds for implicit CFD codes," in Proceedings of the 11th International
Conference on Domain Decomposition Methods, DDM.org, 1997, pp. 233-244.

12

[13] V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition
Methods: Algorithms, Theory, and Parallel Implementation. SIAM, 2015.

[14] A. Klawonn and O. Rheinbach, "A parallel FETI-DP method for adaptive finite
element meshes," International Journal for Numerical Methods in Engineering,
71/4, 413-426, 2007.

[15] J. Janssen and G. Kanschat, "Adaptive multilevel methods with local smoothing
for H1- and H(curl)-conforming high order finite element methods," SIAM
Journal on Scientific Computing, 33/4, 2095-2114, 2011.

[16] S. Balay, W.D. Gropp, L. C. McInnes, and B. F. Smith, "Efficient management
of parallelism in object-oriented numerical software libraries," in E. Arge, A.
M. Bruaset, and H. P. Langtangen, Eds., Modern Software Tools in Scientific
Computing, Birkhäuser, 163-202, 1997.

[17] H. Samet, Foundations of Multidimensional and Metric Data Structures. San
Francisco, CA: Morgan Kaufmann Publishers, 2006.

[18] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational
Geometry: Algorithms and Applications. Berlin, Germany: Springer-Verlag,
2008.

[19] H. Samet, "The Quadtree and Related Hierarchical Data Structures," in ACM
Computing Surveys (CSUR), New York, NY: Association for Computing
Machinery, 16/2, 187-260, 1984.

[20] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering. Boca
Raton, FL: CRC Press, 2008.

