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Abstract 
 

This paper presents a domain decomposition framework with self-registering and 
reusable subdomains for finite element (FE) applications. The framework enhances 
traditional FE applications written in Python by automatically decomposing the 
system into subdomains and enabling the storage and reuse of existing subdomain 
solutions, significantly reducing the computational time for systems with minor 
changes. The proposed framework is evaluated through a solid mechanics application 
to assess its contribution to the analysis speed. 
 
 

Keywords: domain decomposition, finite element method, Python, autosaving 
strategy,  domain hash. 
 
 

1  Introduction 
 

Domain decomposition methods have gained popularity in finite element (FE) 
analysis due to their suitability for parallel computing and their ability to efficiently 
store and reuse subdomain solutions. By dividing the boundary value problem into 
smaller boundary value problems in subdomains, these methods facilitate parallel 
processing on different CPUs and provide the flexibility to implement existing 
subdomain solutions for systems with minor changes, thereby saving considerable 
computational time [1]. 
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The concept of domain decomposition can be traced back to the seminal work of 
[2], who introduced the idea of overlapping subdomains to solve elliptic partial 
differential equations. H.A. Schwarz's alternating method laid the foundation for later 
developments in domain decomposition techniques, such as the additive and 
multiplicative Schwarz methods [3 and 4]. These methods have since been adapted to 
various applications, including fluid dynamics, structural mechanics, and 
electromagnetics [5 and 6]. 

 
With the advent of high-performance computing, domain decomposition methods 

have been widely used to leverage the power of parallel computing architectures. By 
dividing the global problem into smaller, independent subproblems, these techniques 
allow for concurrent execution on multiple processors, leading to significant 
reductions in computation time [7]. Parallel domain decomposition methods can be 
broadly categorized into two classes: overlapping methods, where subdomains share 
common nodes or elements, and non-overlapping methods, which involve the 
partitioning of the original domain into disjoint subdomains [5]. Recent advancements 
in domain decomposition methods have focused on enhancing the parallelization 
capabilities and improving the reuse of subdomain solutions [8 and 9]. 
 

Domain decomposition techniques have also been employed as preconditioners to 
enhance the convergence of iterative solvers for linear systems arising from FE 
discretization [10 and 11]. Preconditioning involves transforming the original linear 
system to accelerate the convergence of iterative methods, and domain 
decomposition-based preconditioners have been shown to be particularly effective for 
large-scale problems [6]. Various software frameworks have been developed to 
facilitate the implementation of domain decomposition methods for parallel 
computing [12 and 13]. These frameworks typically provide a high-level abstraction 
of the underlying parallelism and allow users to focus on the mathematical 
formulation of their problems. 

 
While there is a not a direct study that specifically focuses on saving and reusing 

subdomain solutions (as far as the authors know), several studies and implementations 
indirectly address this concept or incorporate similar ideas. [14] presented a parallel 
FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) method for 
adaptively refined finite element meshes. While the primary focus is on the adaptive 
mesh refinement and the efficient parallelization of the FETI-DP method, the concept 
of reusing subdomain solutions is implicitly considered when the mesh is refined 
locally, and the previous subdomain solutions can be used as initial guesses for the 
iterative solver. [15] presented an adaptive multilevel method for high-order finite 
element methods conforming to H1 and H(curl) spaces. The method focuses on local 
mesh refinement and local smoothing techniques to improve the convergence of 
iterative solvers. Although these studies do not concentrate specifically on saving and 
reusing subdomain solutions, they involve concepts such as local mesh refinement 
and adaptive parallel methods that implicitly require the reuse of subdomain solutions. 
Incorporating the saving and reusing of subdomain solutions into these methods and 
frameworks could lead to further computational efficiency improvements [16]. 
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The proposed domain decomposition framework interfaces with traditional FE 
applications written in Python by adding a few straightforward definitions to the end-
user code. Automatic decomposition of the system into subdomains, registration, and 
reuse of subdomain solutions are performed within the framework.  

 
To register and reuse subdomain solutions, a unique hash string representing the 

corresponding subdomain is created. This involves traversing all properties of 
individual items that constitute the subdomain, such as element and node properties 
and boundary conditions. Special Python decorators have been developed to allow the 
end-user to introduce variables of the functions in the end-user code to the 
decomposition framework. This streamlines the process of registering and reusing 
subdomain solutions. Standard components that automatically decompose end-user-
defined FE objects into subdomains are also presented within the scope of the study.  

 
The proposed framework is evaluated using a sample solid mechanics application 

to determine its contribution to the analysis speed. The evaluation demonstrates the 
potential benefits of the framework in terms of computational efficiency, particularly 
for systems with minor changes that do not require a complete rework of the problem. 
In this context, the proposed framework's ability to store and reuse subdomain 
solutions can be seen as an extension of the preconditioning concept, allowing for 
further improvements in computational efficiency.  

 
An outline of the study is described as follows. Section 2 discusses general 

formulations of domain decomposition. In Section 3, autosaving subdomain solutions 
is investigated. Section 4 offers an illustrative FE implementation using the proposed 
framework and Section 5 evaluates the speed benchmarks for the given example. The 
paper concludes with a discussion of the presented approach in Section 6. 
 

 

2  Domain Decomposition 
 

A non-overlapping Domain Decomposition Method is used. The assumed linear 
Finite Element Analyses (FEA) model is given in Equation (1). 

 
 [ ]K   U B S P  (1) 

 
In the model,  [ ]K  is the Stiffness Matrix, U  is the Degree of Freedom Vector,  B  

and S  are the external body force vector and external surface load vectors 
respectively, and P   is the nodal force vector. Depending on the characteristics of the 
system to be calculated, there may be some additional external load vectors outside of 
and (e.g., temperature difference load vector or prestress load vector). However, 
within the scope of this study, it will be accepted that the right-hand side of the 
equation is only in the presented form. 
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Figure 1: Subdomains and master interface (bold lines + nodes with Dirichlet 
boundary conditions).  P: concentrated forces, s: surface forces, b: body forces. 

 
The first step of the domain decomposition is to decompose the problem domain 

into subdomains s   as depicted in Figure 1. Doing so reveals interface nodes (bold 

lines in the figure) which is called the master interface. In the second step, all 
subdomain equations are expressed in terms of two different variable groups as; 
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where, s

u  represents the inner DOFs and  s
u   is the interface DOFs of the 

subdomain s . Note that, body and surface force vectors are also expressed as 
 q B S  for convenience. In the third step, Equation (2)  is written in its open form 

as follows; 
 11 12 1

s s s s s sK K    u u q P  (3) 
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s s s s s sK K    u u q P  (4) 

Inner DOFs ( s
u  ) can be eliminated with the help of Equation (5). 
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The resulting subdomain composition is obtained in the form of Equation (6). 
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Equation (6) can be written in compact form as; 
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 s s s sK    u q P  (7) 

 
where the following definitions hold. 
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3  Decomposition and Autosaving Subdomain Solutions 
 

The process involves identifying subdomains within the main domain from an 
existing FE implementation. The classes included within the decomposition 
framework is summarized as follows. 
 

 Container: Provided with the user-defined nodes and elements, this class 
creates the subdomains with an effective partitioning strategy while upgrading 
the given node and element with proper properties and methods to support for 
the decomposition with autosaving capabilities. 

 
 Decompose: This class performs decomposition operations on the detected 

subdomains. These operations include; 
o Identification of the degree of freedoms for both the master interface 

and the corresponding subdomains. 
o Generating and solving the master interface equation of the system. 

 
 Subdomain: This class performs subdomain equations. Basic functionality of 

the class is; 
o Generating hash string for the subdomains. 
o Constructing subdomain equations based on Equation (7). 
o Saving and retrieving back the relevant element and node matrices 

defined in Equation (8). 
 

 hashify:  A Python decorator that is designed to allow users to customize the 
hashing process for their user-defined functions. 
 

The “Container” class is using a common strategy in computational geometry 
called spatial partitioning, specifically a technique called a quadtree [17, 18, 19 and 
20], which is used to partition a space to make operations like search, insertion, 
deletion more efficient. The decision on how to split the domain is based on the 
geometry (length and width) of the domain. Container class is being used to group 
nodes or points in a certain spatial domain. Figure 2. demonstrates an example 
subdomain division performed by the Container class. 
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Figure 2: Example subdomain creation for a 2D plane stress mesh with 4 node 
quadrilateral elements. (Node Count: 6590, Element Count: 6252). 

 
 
 

The "Decompose" class creates subdomain objects based on element groups 
provided by the Container. The pseudo-implementation of the Decompose class is 
demonstrated in Figure 3. The "solve" method is a function within the "Decompose" 
class that is designed to solve the master interface equations (see Equation (7)). 

 
 

class Decompose: 
    def __init__(self, nodes, elements, maxPointCount): 
        - Creates the container object. 
           #self.container=Container(nodes=nodes,elements=elements,maxPointCount) 
        - Determines Node and Element groups that is marked by the container object. 
        - Create subdomain objects based on element groups. 
   def solve(self): 
           # Solve the master interface equations by requesting subdomain methods (see Figure 4). 

 
Figure 3: Pseudo-implementation of the Decompose Class. 

 
 
 
The “Subdomain” class identifies the inner nodes and the master interface nodes 

from the given element group, the latter being the boundary nodes that connect with 
other subdomains. The class includes several methods, each of which calculates a 
different aspect of the subdomain's properties, while utilizing a caching system based 
on hash lists to improve performance. If there's no change in the hash of the 
subdomain, indicating no alterations, these methods retrieve previously computed 
solutions, saving computational time. The pseudo-implementation of the Subdomain 
class is demonstrated in Figure 4. 
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class Subdomain: 
    def __init__(self, elements): 
        - Determine inner-nodes and master-interface-nodes of the corresponding element group. 
        # The methods outlined below utilize hash lists provided by the end-user to detect any 
alterations in the subdomain. These methods also store their returns based on the generated hash. 
If there's a change in the hash, they will recalculate the subdomain matrices. Otherwise, they'll 
retrieve the solutions from previously computed ones. 
    def get_K_Sparse: # Assembled Element Stiffness Matrix of the subdomain (see Eq. (1)). 
    def get_K_Subdomain: # Condansated Subdomain Stiffness Matrix (see Eq. (7)) 
    def get_B_Subdomain: # Body forces vector of the subdomain elements (see Eq. (1)). 
    def get_S_Subdomain: # Surface forces vector of the subdomain elements (see Eq. (1)). 
    def get_P_Subdomain: # Concentrated forces vector of the subdomain elements (see Eq. (1)). 

 
Figure 4: Pseudo-implementation of the Subdomain Class. 

 
 
Lastly, the hashify class has been formulated as a Python decorator, aimed at 

empowering the end-user to discern the dependent variables associated with any field 
function (FE matrices and vectors) that they've integrated into their FE framework. 
An exemplification of the application of the decorator is provided in the subsequent 
chapter. The actual implementation of the class is demonstrated in Figure 5. 

 
 

class hashify: 
    def __init__(self, target, hash):  
        self.target = target                      # Registering target function name 
        self.hash_list_function = hash   # Resigtering function dependency (variables) list 
 
    def get_values_to_hash(self, elm): 
        # Returning hashable type (tuple) of the dependency list 
        return tuple(self. hash_list_function(elm))   
 
    def __call__(self, original): 
        # Registering self to the decorated function (to be reached by the Subdomain) 
        original._hashify_ = self               
        return original

 
Figure 5: Implementation of the hashify Class as a Python Decorator. 

 
 
 
4  Example Implementation 
 

In this section, a demonstrative application of the proposed decomposition 
framework to plane stress problem will be presented. The effects of the Autosaving 
feature on the solution times of the problems will be examined. A typical 
implementation of a FE plane stress problem is given in Figure 6 and in Figure 7 with 
node and element implementations respectively. 
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nodes = dict() 
class Node: 
      def __init__(node, id, X, Y): 
            node.id = id 
            node.X, node.Y = X, Y   # Coordinates 
            node.rest = [0, 0]             # Support Conditions [0: free, 1: fixed] 
            node.force = [0, 0]           # Concentrated Loads [Px, Py] 
            node.disp = [0, 0]            # Support Settlements 
            node.code = [-1, -1]        # Degree of Freedom Numbers 
            nodes[id] = node             # Saving node to a dictionary 
 
     # "hash_by" returns a list of variables to be used in hashing the corresponding node object. 
     def  hash_by(node): 
           return [*node.rest, *node.force, *node.disp]

 
Figure 6: An example user-defined Node class definition of the plane-stress element 

along with the implementation of the hash_by method. 
 
 

As shown with the example, the proposed decomposition framework can detect all 
dependencies of the methods that form the finite element equations for the nodes and 
elements via user-defined hashify functions that returns the list of dependencies of the 
corresponding methods. Therefore, the framework can discern whether there are any 
changes in the equations for subdomains containing these elements, by combining the 
hash functions of the elements related to the subregions into a single hash. As can be 
understood from the example application, the additional interface required for the 
proposed decomposition framework has been designed to impose a minimum cost on 
the end-user in terms of coding effort. 
 
 
 
5  Results 
 

Table 1. presents data on how the autosave feature impacts the solution time in 
different decomposition states. Specifically, investigates the effect of changing system 
parameters such as the Stiffness Matrix ([K]), B, S, and P across different subdomains. 

 
The considered cases are as follows. 
 
Case 0: A second solution after autosave without any change in the system. 
Case 1: A second solution with Stiffness Matrix changed in all subdomains. 
Case 2: A second solution with B, S, P changed in all subdomains. 
Case 3: A second solution with Stiffness Matrix changed in a single subdomain. 
Case 4: A second solution with only P changed in a single subdomain. 
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elements = dict() 
class Element: 
     def __init__(elm, id, conn, E, p, h): 
        elm.id = id 
        elm.conn = [nodes[id] for id in conn]  # Connectivity Vector 
        elm.E = E                                             # Elasticity Modulus 
        elm.p = p                                              # Poisson’s Ratio 
        elm.h = h                                              # Thickness  
        elm.boundaryForce = [[0] * 4]*2        # Boundary Forces (4 surface, 2 components). 
        elm.volumeForce = [0, 0]                    # Volume forces [bx, by] 
        elements[id] = elm                               # Saving element to a dictionary. 
 
    …  # Classical definitions related to finite elements (for example, material matrix, coordinate 
vector, Jacobian, etc. These definitions have not been included in the code as they are not directly 
related to the subject of the study). 
 
   @hashify(target= “K”, hash=lambda elm: [elm.E, elm.p, elm.h,  
                                                                          *[(n.X, n.Y, *n.rest)  for n in elm.conn]]) 
    def K(elm):  # Element Stiffness Matrix (8x8). Decorated with hashify. 
        def dK(r, s): 
            h = elm.h                     # Thickness 
            C = elm.C()                 # Constitutive (material) matrix (depens on E and p) 
            BM = elm.BM(r, s)     # Strain-displacement matrix (depends on node coordinates). 
            J = elm.detJM(r, s)      # Jacobian Matrix (depends on node corrdinates) 
            return h * BM.T @ C @ BM * J 
        return IntegrateOn2DDomainWithGaussN2(dK) 
 
 
   @hashify(target= “B”, hash=lambda elm: [*elm.volumeForce,  
                                                                          *[(n.X, n.Y, *n.rest) for n in elm.conn]]) 
    def B(elm): # Element body-force (volume-force) vector (8x1). Decorated with hashify. 
        def dB(r, s):  
            bx, by = elm.volumeForce 
            h = elm.h                     # Thickness 
            J = elm.detJM(r, s)      # Jacobian Matrix (depends on node corrdinates) 
            SFV = SF(r, s)             # Shape functions (Shape function Vector) 
            SF8 = np.concatenate((SFV, SFV)) 
            return h * J * SF8 * [bx, bx, bx, bx, by, by, by, by] 
        return IntegrateOn2DDomainWithGaussN2(dB) 
 
 
   @hashify(target= “S”, hash=lambda elm: [*elm.boundaryForce,  
                                                                          *[(n.X, n.Y, *n.rest) for n in elm.conn]]) 
    def S(elm): # Element boundary-surface external load vector (8x1). Decorated with hashify. 
        def dS(r, s, k):  
            qx, qy = elm.boundaryForce[0][k], elm.boundaryForce[1][k] 
            SFV = SF(r, s)          # Shape functions (Shape function Vector) 
            # … calculations continue. 
            return J * np.concatenate((SFV * qx, SFV * qy)) 
        return IntegrateOn2DBoundariesWithGaussN2(dS) 
 

Figure 7: An example user-defined Element class definition of the plane-stress 
element with hashify functions defined on the top of element matrix and element 

vector definitions. 
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Single Domain: DOF Count: 51102 
Solution time without decomposition: 7.926 sec 

    

Subdomain 
Count 

Master 
Interface 

DOF 
Count 

First 
Solution 

Time 
(sec) 

Case 0 
Time 
(sec) 

Case 1 
Time 
(sec) 

Case 2 
Time 
(sec) 

Case 3 
Time 
(sec) 

Case 4 
Time 
(sec) 

2 306 8.657 0.671 7.239 6.137 4.054 0.777 
3 408 8.807 0.699 7.408 6.183 4.016 0.825 
4 510 8.909 0.703 7.855 6.254 2.134 0.808 
8 918 9.168 0.796 7.945 6.586 1.301 0.915 
14 1530 9.837 0.891 8.007 6.841 1.356 1.012 
27 2454 10.110 1.050 8.663 7.668 1.548 1.169 

 

Table 1: The impact of the autosave feature on solution time for different 
decomposition states. 

 
As the number of subdomains increases, so does the initial solution time and the 

time for each case. This suggests that more complex systems (with more subdomains) 
take longer to solve. The solution times in Case 0 (autosave feature with no changes) 
are significantly less than the initial solution times, indicating that the autosave feature 
has a considerable positive effect on reducing solution time when no changes are made 
to the system. While this case (Case 0) might not always seem particularly valuable, 
it can indeed be useful under certain circumstances. For instance, if there is a need to 
replicate the solution on a different machine, this benchmark time provides a practical 
reference.  

 
The data implies that localized changes in a single subdomain, as in Cases 3 and 4, 

significantly reduce solution times and improve system efficiency. Conversely, 
system-wide changes, as in Cases 1 and 2, don't noticeably enhance solution times, 
suggesting that they are less efficient than localized changes. 
 
 

6  Conclusions and Contributions 
 

The presented domain decomposition framework with autosaving of subdomain 
solutions offers significant advantages for finite element analysis applications. By 
facilitating the automatic decomposition of the system into subdomains and enabling 
the storage and reuse of existing subdomain solutions, the framework substantially 
reduces computational time and enhances the overall efficiency of the analysis 
process. The autosave feature dramatically enhances computation speed (up to 
tenfold) when system changes are localized. This feature might be strategically 
leveraged in scenarios where system alterations can be restricted to a single 
subdomain, leading to significant efficiency gains. Given the generality of the 
methods employed, future investigations could explore expanding this framework to 
accommodate applications beyond the realm of FE. In essence, any computational 
process involving grouped calculations could potentially benefit from the presented 
approach. 
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