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Abstract

This paper presents the development of the scaled boundary finite element method to
benefit from modern technologies for geometrical modelling and high-performance
computing. The scaled boundary finite element method allows the use of arbitrarily
shaped star-convex polyhedral elements. The greater flexibility in spatial discretiza-
tion than standard finite elements facilitates automatic mesh generation. A simple and
efficient octree algorithm is developed to mesh geometric models given in common
formats such as conventional CAD, STL, digital images, and point clouds. By iden-
tifying suitable transformations of the octree cells, a mesh can be deconstructed into
a limited number of unique cell patterns. A pattern-by-pattern method for computing
matrix-vector products in explicit dynamics and iterative solvers is developed. The
operations grouping elements of the same pattern reduce the memory requirement and
improve the parallel computation efficiency. Numerical examples of large-scale prob-
lems with complex geometries are presented. A significant speedup is observed for
these examples with up to 1 billion degrees of freedom and running on up to 16,384
computing cores.
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1 Introduction

Computer simulation using the finite element method [1] is nowadays routinely em-
ployed in engineering practice. The process may require extensive human interven-
tion in mesh generation and is often time-consuming for engineers. At the same
time, digital technologies for geometrical acquisition and modelling are being rapidly
adopted in engineering practice. Using terrestrial laser scanning and close-range
photogrammetry-based techniques, it becomes possible to complete near real-time
shape acquisition of structures that do not possess a CAD model or that have been
subjected to damaging effects. X-ray computed tomography (XCT) can accurately
obtain digital images of the internal structures of materials [2]. The data formats
commonly employed in these digital technologies include STereoLithography (STL),
voxel data, and point clouds. These data formats cannot be used directly to generate
finite element models by employing the current mesh generation methods that have
been developed for CAD models. An involved surface reconstruction must be con-
ducted to convert the model to a typical CAD file format [3]. The process is not only
very time consuming, but more importantly, also rather prone to errors.

In the finite element analysis of large-scale problems, the primary computational
bottleneck is the solution of large linear systems of equations [4]. Modern high-
performance computing (HPC) systems are equipped with a vast number of Central
Processing Units (CPUs) and Graphics Processing Units (GPUs). Compared with the
computational speed of the processors, the memory requirement and memory access
are frequently the most critical factors affecting the computational efficiency of a finite
element analysis on an HPC system. Iterative solvers and explicit dynamics solvers
that rely on element-by-element operations of matrix-vector products and do not need
the assembly of global matrices are often preferred due to their high parallel efficiency.

The scaled boundary finite element method has been developed into a general-
purpose numerical method for the solution of PDE problems [5—17] over the last few
years. This paper aims to present a scaled boundary finite element framework that
automates mesh generation and is suitable to high-performance computing.

2 The Scaled Boundary Finite Element Method

The concept of the scaled boundary finite element method is briefly summarized. The
reader is referred to [18].

The construction of a scaled boundary finite element is illustrated in Figure 1. The
geometry of the element needs to satisfy the star convexity criterion, that is, any point
on its boundary must be directly visible from a point called the scaling centre. The ele-
ment can be a polyhedron with no restriction on the number of nodes, edges, and faces.
The boundary of the element is discretized into two dimensional surface (polygonal)
elements with the nodal coordinates . and the shape functions IN 5(7, ¢) formulated
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Figure 1: A scaled boundary finite element with surface discretization.

in local coordinates 7 and (. The polyhedral element is described by scaling its faces
with respect to a scaling centre and expressed as

z(§,n.¢) = ENs(n, ¢) e )

where ¢ is the radial coordinate chosen as 0 at the scaling centre and 1 on the surface.
The displacement field u = (&, 1, () is represented semi-analytically by introducing
nodal functions w, = wu,(£) along the radial lines connecting the scaling centre and
a node on the boundary and numerically interpolating between the radial lines. The
solution of scaled boundary finite element equation is obtained analytically [19]. This
leads to the semi-analytical solution interpolating the displacement u(&, 7, () in the
polyhedron from the nodal values v, = u,.(§ = 1) and shape functions Ny (£, 7, ()

u = Ny (&, )ue, with Ny (£,1,0) = Ng(n, OVESV! )

with the displacement modes V' and the diagonal matrix S. The strain field e =
e(&,n, ) is obtained from the displacement field in Eq. (2) and the B-matrix By =
By (&,1m,() is defined as (V.: strain modes)

e = Byu,; with By =V .£ V! (3)

Standard finite element procedures can be followed to compute the element stiffness
matrix, mass matrix and internal force vector

k.= [,ByDBydV;m. = [, N{pNydV; p.o)=[,BlodV 4

3 Automatic Mesh Generation

The flexibility of the scaled boundary finite elements are highly complementary with
the efficient octree algorithm for mesh generation. A problem domain is divided into
cells by recursively bisecting the cell edges until specified stopping criteria are met [2].
An example of octree mesh in shown in Figure 2a. An octree mesh is usually balanced
by limiting the length ratio between two adjacent cells to 2 (2 : 1 rule). All the possible
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Figure 2: (a) Example of balanced octree mesh; (b) A balanced octree cell indicat-
ing all possible corner (o), mid-edge (o) and center (+) nodes; (c) Surface
discretization eliminating hanging nodes.

locations of nodes on a balanced octree cell are indicated in Figure 2b. There are 2!? =
4096 cell patterns in total [18]. Each octree cell is modelled as a scaled boundary finite
element. On the faces of the octree cells, only 6 unique patterns exist. They are easily
divided into triangular and quadrilateral elements as shown in Figure 2c to eliminate
the hanging nodes between polyhedral elements of the different sizes.

4 Pattern-by-Pattern Matrix-vector Product

The 4096 octree cell patterns can be further transformed into 144 unique cases using
rotation and mirroring operators. An example is illustrated in Figure 3. The octree
cell in Figure 3b can be transformed into the corresponding master cell in Figure 3a
by rotating 90 degrees about the x axis and then rotating 90 degrees about the 2 axis.
The rotation matrix can be constructed as in Figure 3c. Additional cell patterns can
be defined for given rules. Some examples of element patterns obtained by trimming
through the corner nodes and mid-edge nodes are shown in Figure 4.

In a large-scale problem, many elements of the same patterns but different sizes
will exist. Geometrically, these elements are similar and can be obtained by scaling
the element of unit size (master-element). The stiffness matrix and other properties of
the elements can also be obtained by appropriate scaling. For example, the stiffness
matrix of an element is proportional to the edge length, and the mass matrix of an
element is proportional to the cube of edge length. When performing the matrix-
vector product at the element level, the operations of elements of the same pattern
can be grouped and performed using a single matrix-multiplication. For example, the
product of the stiffness matrix with the nodal displacement can be expressed as

R YK Up U o Ug ] ding(S)) s
p=1

where n;, is the number of unique patterns in the octree mesh, K7 is the stiffness matrix
of a master element of pattern p with unit size, U}, is the nodal displacement vector
of the i-th element of pattern p, and diag (S;) is a diagonal matrix containing the edge
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Figure 3: Identify unique octree pattern by transformation.
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Figure 4: Examples of elements trimming through corner nodes and mid-edge nodes.

lengths of each element of pattern p. Each column obtained from the right-hand side
will be assembled into RI™ using the element connectivity data.

Since the master-element matrices have a small data size, they can easily fit inside
the cache-memory and can be reused during the matrix computation exploiting the
temporal locality of the cache. This approach saves a significant amount of time typi-
cally required in fetching the individual element matrices from the main-memory. Ad-
ditionally, the memory requirement is drastically reduced as the storage of individual
element matrices is avoided. Therefore, the octree pattern-based approach provides
an efficient way of implementing iterative solvers on modern supercomputers usually
relying on cache-based hierarchical memory architecture.

5 Numerical Examples

5.1 Implicit dynamics: Seismic wave propagation response of a
castle on a mountain [20]

A mountain with a castle at the peak is modelled. The model of the mountain spans a
region of 1024 m x 1024 m x 576 m. The height of the castle is 64 m. An octree mesh
is automatically generated from an STL model and shown in Figure 5. A pressure
load is applied at the base of the region. A temporal Ricker wavelet distribution with
the maximum frequency of interest at f,,, = 4.9 Hz is assumed.

The maximum element size is 16 m and the minimum element size of 0.0625 m.
It contains 638,707 elements and 1,353,006 nodes (4,059,018 DOFs). To consider
the large-scale seismic wave propagation in the mountain and the fine-scale dynamic



Figure 5: Mesh of a castle on a mountain
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Figure 6: Displacement magnitude contour plots for the castle on a mountain at 0.44 s
(left) and 1.04 s (right).

response of the structure in one model, an implicit method, the HHT-o method, is
chosen to perform the time integration. The linear equations are solved using the
octree pattern-based parallel preconditioned conjugate gradient (PCG) solver. The
time step size is chosen as At = 2 x 1072, allowing 10 time steps per period at the
maximum frequency of interest. The contours of the displacement magnitude for half
of the mesh are plotted at the time 0.44 s and 1.04 s in Figure 6. It can be seen that as
the wave travels from the source to the rest of the region, diffracted by a fault under
the mountain.

5.2 Explicit dynamics: Nonlocal damage analysis of concrete spec-
imen [21]

A 3D image of a concrete specimen with the resolution 1024x1024x1024 (~1.07
billion voxels) is obtained using XCT-scan as shown in Figure 7. Each voxel in the
image has a side length 70 pm. The specimen has a cubic shape with side length
approximately L =72 mm. The specimen is segmented into aggregates, mortar, voids,
and interface transition zones between the aggregates and mortar.

A modified exponential model is used for the damage. The internal length [, =
0.14 mm is chosen to consider the non-local effects. The left surface of the specimen



Figure 7: 3D image of concrete specimen and octree mesh

Figure 8: Damage contours plotted on mid-plane slices of the concrete specimen at
t = 38.5 us(left) and ¢ = 60.9 us(right).

is constrained against displacement in its normal direction. A uniformly distributed
traction P (tensile) is suddenly applied on the opposite surface. The explicit dynamic
analysis is carried out for about 61 us, with the stable time-step size computed as
12.8 ns and the total number of time-steps used is 4800.

The various stages of the damage evolution in the concrete specimen sliced along
the mutually perpendicular mid-planes are shown in Figure 8. It is observed that the
damage process zones (DPZs) initiate at multiple locations; however, they are mostly
located near voids (where stress concentration exists) and I'TZs (weaker material) in
the specimen. As the loading continues, the DPZs in the specimen begin to grow and
coalesce leading to the formation of macro cracks.

5.3 Explicit dynamics: Wave propagation in a sandwich panel [22]

A sandwich panel with two steel cover sheets and a foam-like aluminum core is mod-
elled. The digital image, shown in Figure 9, is obtained by X-ray CT scans. The size
of the panel is 288 mm x 288 mm x 57.6 mm, while the thickness of the cover sheet is
4.8 mm. An octree mesh is generated with a maximum element size of 0.96 mm and
a minimum element size of 0.24 mm. The panel is mirrored in the = and y directions
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Figure 9: Geometry and mesh of the sandwich panel
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Figure 10: Wave propagation in a sandwich panel.

twice. Hence, the edge length of the panel becomes 1152 mm. There are 216,323,104
elements and 1,064,602,902 DOFs in the octree mesh of the panel.

A sine-burst excitation is applied at one corner of the plate. The Lamb wave prop-
agation in the panel is simulated using an explicit central difference method for a total
duration of 0.4 ms. The time step size At = 2.98 x 107° ms is used. The magnitude
of the displacement responses at two time instances are shown in Figure 10a. The
speedup of the multiple cores is illustrated in Figure 10b.

When 100% efficiency is assumed at 64 cores, it is observed that a speedup factor
of 29,760 is obtained with 16,384 cores. This super-linear speedup is caused by the
cache effect, i.e., as the mesh is partitioned and distributed to more cores, more data
can be fit into the cache memory of the compute nodes, which has significantly higher
data processing speed than RAM.

6 Concluding remarks

A scaled boundary finite element framework is established for fully automated anal-
ysis on high-performance computing systems. The salient features of this approach
include:



1. The scaled boundary finite element method allows the construction of star-
convex polyhedral elements. An element may have an arbitrary number of faces,
edges and nodes.

2. An efficient octree algorithm is utilized for automatic mesh generation. The
same algorithm can handle not only traditional CAD models but also STL mod-
els, digital images, and point cloud data. The issue of hanging nodes is maturely
resolved using the polyhedral elements.

3. A pattern-by-pattern algorithm for performing matrix-vector products is devel-
oped. It reduces the amount of memory and memory access in the analysis and
improves the computational efficiency on HPC systems.

The scaled boundary finite element framework incorporating fully automated mesh
generation and high-performance computing implementation is capable of handling
large-scale problems with complex geometry, as demonstrated by examples.
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