
Analytical Hierarchical Tucker
Representation using Binary Trees

Z. Qiu1,2, F. Magoulès2,3, D. Peláez1

1 Institut des Sciences Moléculaires d’Orsay, Université
Paris-Saclay, Orsay, Île-de-France, France

2 MICS, CentraleSupélec, Paris-Saclay University, Gif-sur-Yvette,
France

3 Faculty of Engineering and Information Technology, University
of Pécs, Pécs, Hungary

Abstract

In this contribution we show that it is possible to achieve an analytical binary tree
representation for a tensor stemming from an underlying scalar field. As initial data-
structure we use a binary tree. This is obtained by a hierarchical Tucker (HT) decom-
position of a reference tensor. To achieve this, tensor matricizations are followed by
their truncated singular value decompositions. Then we fit the left singular vectors at
each node using a set of auxiliary basis functions. These are system-dependent or-
thogonal polynomials. We call this finite basis representation (FBR). The resulting
HT-FBR expression can be reconstructed to grids of any density, within the same do-
main of definition, while keeping the error reasonably/physically small. This paves
the way to the direct optimisation of these compact analytical binary tree structures.

Keywords: tensor decomposition, low-rank approximations, finite basis representa-
tion, singular value decomposition, analytical data-structure, binary tree

1

Proceedings of the Seventeenth International Conference on
Civil, Structural and Environmental Engineering Computing

Edited by: P. Iványi, J. Kruis and B.H.V. Topping
Civil-Comp Conferences, Volume 6, Paper 13.4

Civil-Comp Press, Edinburgh, United Kingdom, 2023
doi: 10.4203/ccc.6.13.4

Civil-Comp Ltd, Edinburgh, UK, 2023

1 Introduction

Tensors, aka multidimensional arrays of data, are ubiquitous in the fields of mathemat-
ics, engineering, as well as natural sciences, in those problems represented on grids.
Owing to the so-called curse of dimensionality [2], tensor decomposition methods
have become essential for the efficient treatment of high-dimensional data structures.
This is of particular relevance in Deep Learning approaches [1]. In the following para-
graphs, we will succinctly describe some of the terms and concepts necessary for our
discussion.

Let A be a scalar field (a multivariate function of the coordinates) mapped onto a
discrete d-dimensional space:

A(x1, x2, . . . , xd) → Rd (1)

The tensor resulting from its mapping onto a grid reads:

A ∈ RI1×I2×...×Iµ×...×Id (2)

where Iµ refers to the number of grid points associated to mode µ. Unless otherwise
stated, the scalar fields we refer to will correspond to smooth physical quantities (con-
tinuous and differentiable functions). In other words, when mapped onto a tensor two
any of its elements will fulfil:

|Ai1,i2,...,iµ,...id − Ai1,i2,...,(i+1)µ,...id | < ϵ (3)

with ϵ small. Grid representations suffer from the so-called curse of dimensionality
which refers to the exponential growth in data-points and the concomitant number of
operations upon increase of the number of dimensions of the system. Whereas most
common applications in engineering or applied mathematics will generally make use
of tensors with d = 3 or 4 (e.g. heatmaps, video or image compression), in natural
sciences, on the other hand, d can be of any dimension. This is epitomized by the field
of quantum mechanics in which the (wave) function defining an N -body system (N ≫
4) will usually depend on the coordinates of every particle. As a consequence, accurate
low-rank tensor approximations become mandatory. In fact, major developments in
tensor representations have arisen from this field. [4, 7, 9, 10]

Specifically in this work we will focus on the so-called sum-of-products (SOP),
separable form. These are compact, low-rank representations which are, in turn,
very appropriate for the solution of multidimensional integrals. [7] Indeed, a multi-
dimensional integral can be turned into a SOP of one-dimensional integrals provided
that every quantity in the integrand is of SOP form. Arguably, the most widely em-
ployed SOP ansätze are Tucker 4:

Ai1,...,id ≈ ATucker
i1,...,id

=

m1∑
j1

· · ·
md∑
jd

Cj1,...,jd

d∏
µ=1

Uiµjµ (4)

2

and the canonical polyadic (CP) form 5:

Ai1,...,id ≈ ACP
i1,...,id

=
R∑

r=1

λr

d∏
µ=1

Uiµr (5)

In the case of Tucker any tensor element is approximated by an expansion in terms
of a set of, exponentially growing, core tensor coefficients Cj1,...,jd and a set of factor
matrices (U). In contrast, for CP, a much smaller number of terms is needed since no
exponential scaling is present. Though formally similar, the main difference between
them is that, contrary to Tucker, the CP factor matrices are not orthogonal, though the
column vectors are possibly normalized. This extra degree of flexibility leads to very
compact CP expansions when compared to Tucker ones. The traditional algorithms
to obtain such expressions are algebraic, in other words, grid-based and, consequently
severely limited by dimensionality.

Recently some of us have proposed turning such grid-based tensor decompositions
into analytical expressions though the use of a set of auxiliary basis functions which,
hereafter, we will refer to as Finite Basis Representation (FBR). We have done this
for the Tucker form (SOP-FBR) [6] as well as for CP schemes (CP-FBR) [5]. In
the former case, Tucker, the core tensor grows exponentially thus limiting its scope
of application. In the latter, despite its linear scaling, the computation of the basis is
problematic. [5,9] Since HTD provides an intermediate path, polynomial scaling (vide
infra), in this work, we propose to apply our FBR approach to a hierarchical Tucker
decomposition (HT) and show that the analogous HT-FBR not only possible but also
advantageous with respect the other two methods. In short, the factor matrices in Eq.
4 can be expressed in SOP-FBR form:

σ : Rnt 7→ Rkt+1 (6)

P : Rnt×rt 7→ R(kt+1)×rt , P (Ut) =
rt∑
r

σr((Ut)r) (7)

with kt being the degree of expansion polynomial σ. The latter will provide a means
of interpolating each of the columns of Ut. Its choice will be problem dependent.
[6]. Usually storage of a polynomial coefficient is far less than an entire Ut since
nt > kt + 1 in most of the case. As a result, Tucker format in the terms of FBR is
therefore:

A∗
i1,...,id

=
∑
j1

· · ·
∑
jd

Cj1,··· ,jd

d∏
t

(
rt∑
r

σr((Ut)r)) (8)

2 Theory

In what follows, we briefly describe the algorithm we have employed for our initial
Hierarchical Tucker decompositions (HTD) [3]. Then, we show how using a set of

3

auxiliary basis (finite basis representation, FBR), one can turn the HTD structure into
an analytical HT-FBR function. Finally, we apply it to a model 6D tensor (stemming
from a scalar field) to illustrate its properties.

2.1 Hierarchical Tucker decomposition of tensors

Let A ∈ RI be an d dimension tensor, note index set in each dimension µ ∈ Z, µ < d
as Iµ such that:

I := I1 × ...× Iµ × ...× Id (9)
Iµ := (1, ..., nµ), µ ∈ (1, ..., d) (10)

Iµ := I1 × ..., I(µ−1) × I(µ+1), ..., Id (11)

The orthogonal Tucker format of tensor A:

A = (U1, ..., Ud) ◦ C (12)

in which Uµ ∈ Rnµ×rµ so called mode frame, rk is kth Tucker rank of A and entire
Tucker rank pair forms a tuple rn ∈ Zd = (r1, ..., rµ, ..., rd). Notation ◦ represents the
multiliniear multiplication. A mode-µ multiplication product Uµ ◦µ A’s elements can
be written as

Uµ ◦µ A(i1,...,iµ−1,i,iµ+1,...,id) =

Iµ∑
k=1

A(i1,...,iµ−1,k,iµ+1,...,id)U(i, k) (13)

Uµ is the mode frame of representation as 12. Actually, 12 with 13 lead to SOP form
of Tucker in 4

We here use the notation At := Mt(A) matricization of A as in [3] and

It := ×µ∈tIµ (14)
It′ := ×µ∈t′Iµ (15)

where t is a mode cluster and t′ := {1, ..., d}⧹t the complementary cluster, then

Mt : RI → RIt×It′ , (16)
(Mt(A))(iµ)µ∈t,(iµ)µ∈t′

:= Ai1,...,id (17)

Let T be a binary tree for dimension dt such that any node tn, n < dt belonging
to T has and only has at most two child nodes, depth of T = ⌈log2(dt)⌉. We note a
node tn belongs to leaf node set L if it has no associated child node while root node
is the only node in the binary tree has no parent node. In between interior nodes are
node with one and only one parent node and no less than one child node, let I be the
entire set of interior nodes. A full binary tree is a binary tree with all nodes belongs
to the tree has either no or two child nodes. Let full binary tree associate a cluster of

4

mode to form a dimension tree TI , we propose a dt = 6(d = 4) example in Figure 1,
each node is distributed a mode cluster t, i.e. t = {0, 1, 2, 3} in the root node. Mode
clusters are deployed from root to leaves recursively.

{0,1,2,3}

{2, 3}

{3}{2}

{0,1}

{1}{0}

Figure 1: Example of a 4D cluster tree, each node is so-called a mode cluster.

For each node we settle At and compute its SVD decomposition,

At = UtΣtV
T
t (18)

Ut and Vt are the set of singular vectors of At, Σt is a diagonal matrix where diagonal
elements are singular values in descending order. Then we choose first rt columns as
mode frame of node. Each mode frame Ut belongs to I can be represented by mode
frames Utl and Utr of its child nodes by a transfer tensor Bt:

(Bt)i,j,v := (Ut)i · (Utl)j ⊗ (Utr)v (19)

The cluster ((Ut)t∈L, (Bt)t∈I) forms a hierarchical decomposition of tensor A. The
truncation of HTD, in SOP form, is defined by

π(t∈T l
I)
= A · Ut (20)

AH =
∏
t∈T 1

I

· · ·
∏
t∈T d

I

πtA (21)

π(t∈T l
I)

is the projection of A on the Ut at level l of TI . Total storage complexity less
than (d− 1)r3max + rmax

∑d
µ=1 nµ, rmax = max(r1, ..., rµ, ..., rd) [3]. As comparison,

Tucker storage grows exponentially with the total rank
∏d

µ=1 rµ +
∑d

µ=1 nµ · rµ while
CP grows linearly with r, that is, r + r

∑d
µ=1 nµ = r(1 +

∑d
µ=1 nµ).

5

3 Hierarchical Tucker using Finite Basis Representa-
tion (HT-FBR)

In a nutshell, we first define the hierarchical Tucker format (HT) of a tensor, we in-
troduce the FBR to interpolate the left singular vectors of each mode. This typically
would reduce the storage complexity. So far, according to the methods introduced
before, we propose a new algorithm, which combines HTD and FBR, interpolates
the leaf nodes or all nodes of HTD, and further reduces the storage complexity while
ensuring high precision.

L is set of leaf nodes belongs to a frame tree TI , Ut∈L are mode frames associated
with L. We therefore interpolate Ut∈L with same Bt∈I as those in 19 since Bt repre-
sents the linear combination of the Kronecker product, thus combination still holds.
We have a HTD-reconstructed tensor (AH):

AH =
∏
t∈T 1

I

· · ·
∏
t∈T d

I

P (πt∈L)A (22)

We simply note U c
t ∈ Rkt×rt =

∑rd
r σrk(Ut)r The frame tree associated with

((U c
t)t∈L, (Bt)t∈Lc) is called HT-FBR of tensor A. Storage complexity in HTD2.1

becomes less than (d− 1)r3max + rmax

∑d
µ=1 kt

Since the fact that the basis functions of polynomial interpolation are a set of con-
tinuous functions, it is an obvious idea to expand grid of sample tensor to a finer one
as named in [5], so called primitive grid for the former and coarse grid for the later.

σ† : Rnt
Ω 7→ RrN

Ω ,Ω ∈ [a ∈ R, b ∈ R], a < b (23)
P † : Rnt×rt

Ω 7→ RrN×rt
Ω (24)

A† =
∏
t∈T 1

I

· · ·
∏
t∈T d

I

P †
Ω(πt∈L)A (25)

σ† is a polynomial interpolation function and Ω is a target domain of R range from a to
b that a < b. It expand current grid order nt to rN normally higher than nt. The initial
tensor A then is projected to a higher order set of πt which leads to avoid calculate a
exact higher order one.

4 Results and discussion

In the following we will present a discussion on the performance of our approach by
comparing to other available methods. Python and Numpy have been used throughout
this work. Concerning CP and HOOI (Tucker flavour) tensor decomposition methods,
we have used the Tensorly library. The HTD and HTD-FBR are our own impleme-
mentations developed with Python version 3.10, Numpy version is 1.23.5 . In the

6

experiment we use Numpy polynomial package to interpolate modes, mainly used
Hermite and Chebyshev polynomial. All the figures have been realised with Mat-
plotlib 3.7.1.

4.1 Proof of concept: HT-FBR for a 6D scalar field

We now discuss a physically meaningful and more general example. We first test the
performance of HT-FBR with different degree of polynomial basis for the reconstruc-
tion of a model 6D scalar field like defined in [8]:

Ascal(R1, R2, R3, θ1, θ2, τ) =

S0 + e−D(R1,R2,R3,θ1,θ2) ×
∑

ijklmn

cijklmQ
i
1Q

j
2Q

k
3Q

l
4Q

m
5 cos(nQ6) (26)

where D =
∑3

i=1 di(Ri −Rref
i)2 +

∑2
j=1 dj+3(θj − θrefj)2 and

Q1/2/3 = 1 − e−0.7(R1/2/3−Rref
1/2/3

), Q4/5 = θ1/2 − θref1/2 , Q6 = τ − τ ref with a set of
known parameters Rref

1 , Rref
2 , Rref

3 , θref1 , θref2 , τ ref .

Our reference tensor (Ascal), to be HT-decomposed, is defined in Table 1: its di-
mensions, aka sampled points per interval, ({nt}), the dimension of the reconstructed
tensors, interpolated values, ({RNi

}, with i = s, l) as well as the domain of definition
(Ω) which is constant. The latter corresponds to the range of definition of the physical
coordinates. Our experiment will consist in using the HT-FBR of Ascal to expand its
representation on the initial (and coarser) grid to a finer one (A†). We have considered
two finer cases: (i) a small (but fine) grid (A†

s); and (ii) a large (even finer) one (A†
l).

Definition of the 6D surface Ascal mapping
dim (node) nt RNs RNl

Ω
0 5 7 10 [2.10, 3.25]
1 5 8 10 [1.30, 2.45]
2 5 7 10 [1.90, 2.60]
3 5 7 10 [-0.65, 0.25]
4 5 7 10 [-0.65, -0.10]
5 12 15 24 [0, π]

Table 1: Interval with sample points number nt in each dimension and corresponding
interpolated points number RNs and RNl

as defined in Eq. (23)

Table 2 presents the RMSE analysis of the polynomial reconstructed (Ut) : leaf
nodes and interior nodes in binary tree after reconstruction with different node rank
and different kt compare with the Ut of the node (from HTD) See Fig. 1 for the node
notation. The second column shows the node rank (rk) for corresponding node. The
third column presents either the degree of the polynomial (kt). Note that as discussed

7

in the Theory section, we have stored the HTD transfer tensors. It is hence possible
to converge the interpolation at each node by choosing an appropriate kt and node
rank. As a result of this simple step, we have obtained an analytical expression which
can be evaluated to reconstruct tensors of any data-point density. As discussed below,
the error remains virtually constant to any degree of interpolation (see Table 3). This
has also been observed in our other SOP-FBR and CP-FBR methods [5, 6]. This
reflects the smooth nature of the underlying scalar field. More relevantly, the number
of hyperparameters of our HT-FBR model is, obviously, independent of the size of
the reconstructed tensor so that one can get a reasonable (constant) sum-of-product
low-rank binary tree approximation to tensors of any size.

Quality of the node frame polynomial reconstruction (Ascal HTD)
node rk kt reconstruction RMSE
{0} 5 5 1.786e-13
{5} 12 5 0.204
{5} 12 10 0.083
{5} 12 15 2.447e-12
{1, 2} (10, 5) 5 (max leaf) 1.524e-16
{1, 2} (25, 5) 5 (max leaf) 1.833e-16
{4, 5} (10, 12) 5 (max leaf) 0.085
{4, 5} (10, 12) 15 (max leaf) 9.034e-13
{4, 5} (60, 12) 10 (max leaf) 0.037
{4, 5} (60, 12) 15 (max leaf) 1.125e-12
{0, 1, 2} (100, 10, 10) None 0.065
{3, 4 ,5} (100, 10, 10) None 0.045
{3, 4 ,5} (300, 60, 12) None 9.911e-17
{3, 4 ,5} (300, 60, 12) 15 (max leaf) 1.178e-15

Table 2: Influence of the node rank and polynomial degree on the RMSE of the recon-
structed node frames.

In 2, we display the change in RMSE with the growing total rank. For full rank,
HTD and HT-FBR both converge to a minimum faster as the node rank increases, and
CP overfits when the node rank beyond 600. The CPU time necessary for HTD and
HT-FBR in the high-dimensional case increases proportionally to the node rank. This
is due to the fact that the algorithms are neither parallelized nor memory optimized
yet. All four methods converge to an accuracy lower than 1e-9 which is more than
sufficient for practical physical applications. Both HTD and HOOI (Tucker) reach 1e-
15 and HT-FBR converges to 1e-13. On the other hand, CP (ALS) reaches a minimum
of 1e-9. A comprehensive mode-analysis is presented in Fig.3.

8

Tensor decomposition methods on 6D Ascal (5, 5, 5, 5, 5, 12)
Method RMSE rank (or node rank) time
HOOI 2.47835e-15 (6, 6, 6, 6, 6, 6) 3.6781s

total: 46656
CP 3.40570e-9 593 6.8984s
HTD 9.02599e-15 (300, 60, 12) 13.1288

total: 547
HT-FBR (Hermite) 7.64059e-3 (100, 60, 12) 6.5228
(kt = 10) Total: 357
HT-FBR (Hermite) 5.50068e-7 (300, 60, 12) 13.4994
(kt = 10) Total: 547
HT-FBR (Hermite) 7.08053e-13 (300, 60, 12) 13.1376
(kt = 15) Total: 547

Table 3: Comparison of the quality and CPU times for common tensor-decomposition
methods: (i) Tucker (HOOI); (ii) CP; (iii) HTD; and (iv) HT-FBR using Her-
mite polynomials. The CP rank corresponds to the lowest RMSE value.

Figure 2: Comparison of the decrease (logarithmic scale) of the RMSE with the to-
tal rank for: (1) HOOI/Tucker (blue/middle curve); (2) CP (orange/lowest
curve); (3) HTD and (4) HT-FBR (upper curves, superimposed) using our
6D scalar field as benchmark. We use same rank for all dimensions of
HOOI, in the figure plots the multiplication of them while CP rank and
HTD/HT-FBR using their exact total rank.

9

RMSE of recontructed tensor DIMS expansion with different polynomial degree
grid i kt of dim (node) 0-4 kt of dim (node) 5 RMSE
s 4 10 1.0222e-4
s (HTD) None None 3.2368e-2
l 4 8 1.3655e-4
l 4 15 1.1688e-4

Table 4: Comparison of the RMSE with full rank for HT-FBR reconstructions of the
A†

s and A†
l tensors using the HT-FBR parameters from the HTD of the original

Ascal. It should be highlighted that the number of elements are: 3.75·104,
>2.88·105 and 2.4·106 for Ascal, A†

s and A†
l , respectively. Note that we have

used the same polynomial degree for node {0} to node {4} since they have
the same size of Ut.

As final result, in Table 4 we present a comparison of the quality (RMSE) of dif-
ferent HT-FBR interpolations. They all stem from the HTD of Ascal using full rank
(300, 60, 12). The corresponding HT-FBR has been used for the reconstruction of fine
grid tensors A†

s and A†
l . As it can be observed, the quality of our HT-FBR expansion

is virtually independent of the size of the targeted grid. Errors in both grids amount to
1e-4, a value that compares well with previous methods (see Table IV in Ref. [7]).

5 Conclusions

We present a simple method to obtain the analytical binary tree representation of a
d-dimensional tensor. Our method, HT-FBR is the analytical counterpart of HTD and,
as such , we consider binary trees of R nodes with node rank rk. Our approach relies
on a set of auxiliary functions (typically orthogonal polynomials) which serve to fit
the rk left singular vectors of every child in the tree. The resulting tree data structure
is analytical and depends on (R− 1) ∗ rk ∗n parameters. Note that the root node does
not have an associated node rank. HT-FBR is able to reproduce HTD results within
a very good agreement at a lower cost. Our HT-FBR expressions are more compact
than the original HTD ones. Moreover, the analytical nature of HT-FBR enables the
reconstruction (interpolation) to much denser tensor than the original one. HT-FBR
belongs to the extended χ-FBR family for which χ = Tucker, and CP. However, the
use of tree structures presents several advantages over Tucker or CP. First, in contrast
to Tucker, its rank grows polynomically instead of exponentially. Second, similar to
Tucker, the analogous of the factor matrices in Tucker, are also orthogonal in HT-FBR
(also in HTD). This is very interesting for the algebraic manipulation of the HT-FBR
object. And third, the rank we obtain is much closer than that of CP than that of
Tucker but without running into the issues of CP optimisation. Finally, our analytical
form depends on a small number of parameters thus rendering it suitable for direct
optimisation. As future perspectives we will parallelise the HT-FBR structure tasks
and then GPU optimise its computation.

10

Acknowledgements

The authors would like to gratefully acknowledge N. Nadoveza for fruitful discussions
on CPD.

References
[1] D. Bacciu and D. P. Mandic. Tensor Decompositions in Deep Learning. ESANN

2020 proceedings, European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning, 2020. 114109.

[2] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Univer-
sity Press, Princeton, 1961.

[3] Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM
Journal on Matrix Analysis and Applications, 31(4):2029–2054, 2010.

[4] H.-D. Meyer, U. Manthe, and L. S. Cederbaum. The multi-configurational time-
dependent Hartree approach. 165:73–78, 1990.

[5] Natasa Nadoveza, Ramón L. Panadés-Barrueta, Lei Shi, Fabien Gatti, and Daniel
Peláez. Analytical high-dimensional operators in canonical polyadic finite basis
representation (CP-FBR). The Journal of Chemical Physics, 158(11), 03 2023.
114109.

[6] Ramón Panadés-Barrueta, Daniel Peláez. Low-rank sum-of-products finite-
basis-representation (sop-fbr) of potential energy surfaces. The Journal of Chem-
ical Physics, 153, 11 2020.

[7] Daniel Peláez, Hans-Dieter Meyer. The multigrid potfit (mgpf) method: Grid
representations of potentials for quantum dynamics of large systems. The Jour-
nal of chemical physics, 138:014108, 01 2013.

[8] Falk Richter, Majdi Hochlaf, Pavel Rosmus, Fabien Gatti, Hans-Dieter Meyer.
A study of the mode-selective trans–cis isomerization in HONO using ab initio
methodology. The Journal of Chemical Physics, 120(3):1306–1317, 01 2004.

[9] M. Schröder. Transforming high-dimensional potential energy surfaces into a
canonical polyadic decomposition using Monte Carlo methods. 152:024108,
2020.

[10] H. Wang and M. Thoss. Multilayer formulation of the multiconfiguration time-
dependent Hartree theory. 119:1289–1299, 2003.

11

