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Abstract 
 

Many studies have worked on reducing dynamic analysis convergence problems. 
Currently, there are some robust algorithms. However, they can fail when dealing with 
complex structures due to numerical and especially physical instabilities. Some of 
them can also be time-consuming procedures. On the other hand, the intrinsic 
truncated error in structural analysis decreases when the shape function order is raised 
(p-refinement). Nevertheless, this action will increase the complexity and, thus, 
structural convergence problems. Therefore, the solution proposed is to adapt the 
complexity when physical instabilities are predicted, and Hermite interpolation can 
be used to state well-posed results. The physical instability can be predicted by 
analyzing strain energy outliers and moment-curvature rule abnormalities. Moreover, 
to get more realistic results, nonlinear elements with plastic length were developed. 
Since no previous references have worked with these kinds of nonlinear high-order 
elements, using a set of sigmoid functions in the stiffness matrix integral was the 
solution to obtain generalized high-order Timoshenko beams. Another contribution of 
this work was establishing an appropriate manner of getting the maximum permissible 
error in p-adaptive methods. Finally, some examples were made to prove the 
formulation’s robustness and show how influential the truncated error can be. 
 

Keywords: frame elements, high-order elements, nonlinear elements, p-adaptive 
 

1  Introduction 
 

Although forces equilibrium and displacement compatibility are guaranteed among 
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all degrees of freedom (DOF) in structural analysis, for reliable results, the 
consistency between the equilibrium-compatibility analysis and the interpolation 
functions must also be satisfied. Lack of this consistency can lead to significant 
truncation errors. Thus, a solution is to increase the number of elements (ℎ) or the 
order of the interpolation functions (𝑝). A new problem arises from there; the 
complexity system, round-off error, and analysis time increase too. Complexity is a 
characteristic of actual buildings that can lead to significant challenges, for it will 
result in a lower analysis convergence rate if it is combined with high nonlinearities. 
The objective of this work is to establish a robust and no time-consuming procedure 
that can deal with dynamic analysis reducing the truncated error. 
 

The truncated error can be reduced using h-,  p-, or hp-adaptive methods, where 
only the more influential elements will be refined. The p-adaptive methods can reduce 
the truncated system error more efficiently than the h-adaptive methods since the 
number of DOFs will be minor. For instance, for the analyzed buildings in the present 
study, some elements should be divided into ten times more parts by using an h-
adaptive method instead of a p-adaptive. This fact is also important because the higher 
the DOF number, the higher the system complexity. Hence, this study will focus on 
p-adaptive approaches. 
 

One of the biggest concerns is to get numerical and physical stability on complex 
systems. There are many researchers that have worked to reduce this convergence 
problem for dynamic analysis. For example, we have in the last years the followings. 
Abuteir, Harkati, Boutagouga, Mamouri, and Djefhaba [1] worked with soft higher-
order deformation modes using a reduced/selective numerical on functionally graded 
material plates. For this purpose, they employed a five-point reduced integration 
scheme in membrane and shell elements to prevent the zero energy hourglass mode 
phenomenon. Moreover, an implicit time integration based on a combination of the 
trapezoidal rule and the three Euler backward methods was used to achieve 
convergence when nonlinearities occur. Some other authors have developed time 
integration schemes, like Song, Eisenträger, and Zhang [2] or Ji and Xing [3], who 
based their studies on a space-state formulation. Aside from time high-order methods, 
the Generalized-alpha approaches, which are faster than others, can reduce spurious 
frequencies that can produce a system divergence. However, Generalized-alpha 
methods cannot guarantee the conservation of energy-momentum, which can evocate 
in a system instability too [4]. Otherwise, the state space-based procedures might 
consume time since the second-order differential equation needs to be converted into 
a first-order differential equation, which generally results in a matrix twice the size of 
the total stiffness matrix. Therefore, the present study will use Generalized-alpha 
methods, and the energy-momentum conservation will be controlled indirectly. 
 

The next issue is to obtain a realistic nonlinear model, e.g., frames with plastic 
lengths, for high-order shape function elements. No current studies present a solution 
for this specific problem. However, the closest related studies are stated in the 
following. Park and Kim [5] and Kim, Son, Yi, and Hong [6] created a procedure for 
nonlinear analysis in plastic regions. They worked with a force-based element and 
Lagrangian shape functions. In their proposal, the authors use polynomial enrichment 
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functions in the plastic region to represent nonlinear occurrence. It has been shown 
herein that discontinuities can be added to the material nonlinearity, avoiding 
enrichment functions. 
 

Eisenträger, Atroshchenko, and Makvandi [7] observed the influence of increasing 
the polynomial order of the element compatibility function and, for the same reason, 
of the shape function. They worked with only elastic systems and static forces with 
1D (rod element), 2D, and 3D elements. Bai, Gao, Liu, and Chan [8] have proposed a 
nonlinear beam-column element with 16 degrees of freedom. In another study, since 
there are only a few papers dealing with the task of improving the performance of 
elements, Sharifnia [9] worked on a theory for a high-order element for large 
deformations. Hence, the solution for obtaining nonlinear plastic length on high-order 
elements was to use a set of sigmoid functions to depict the nonlinear material 
behavior conserving the continuous displacement space on generalized Timoshenko 
elements. 
 

The contributions presented herein are to have set out 1) a robust time-history 
procedure based on an adaptive complexity scheme that can reduce the truncated 
error, 2) a stiffness matrix process that can deal with nonlinear plastic length hinges 
on high-order elements, and 3) an effective manner to obtain the maximum 
permissible error for p-adaptive (and h-adaptive) procedures. 
 
2  Methods 
 

The convergence of the solution for every iteration of a nonlinear differential equation 
set analysis will be affected by the stiffness, mass, and damping matrices, the applied 
loads, and the analysis method used. The matrices and applied loads can be affected 
by the system’s complexity. The general approach of this study will be to adapt the 
system complexity to reduce the convergence problems when high nonlinearities 
occur. The complexity of structural analysis (𝐶) can be summarized by the set of nodes 
(𝑁), set of elements (𝐸), set of degrees of freedom (𝐷𝑂𝐹), material properties (𝑀) 
(because composites or viscoelastic materials will need more complex analysis), the 
set of loads (𝐿), and set of boundary conditions (𝐵𝐶). If we let 𝐶 be a tuple such as 
𝐶 ൌ ሺ𝑁, 𝐸, 𝐷𝑂𝐹, 𝑀, 𝐿, 𝐵𝐶ሻ, and 𝐶̅ is a complexity enough to achieve convergence, the 
condition 𝐶 ൑ 𝐶̅ shall be met for a successful analysis. C will increase when p- or h- 
refinement is employed because N, E, and DOF will do too. Therefore, a scheme that 
reduces C using Hermite interpolation to ensure well-posed results has been proposed. 
In addition, other techniques have been studied and described below. 
 
2.1  Structural Analysis Procedure 
 

The lack of convergence from high-order shape functions can arise for large time-step 
sizes, which causes numerical instability. Consequently, implicit time-history analysis 
is more convenient for the problem of this study. As stated before, some of the faster 
and more robust procedures are the Generalized-alpha methods (GAM). Those belong 
to the direct integration implicit procedures that were derived from the Newmark type 
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analysis. Therefore, GAM will be used with a modification to reduce physical 
instability for high-order interpolation functions. 
 

 The physical instability problem will be predicted when 1) the strain energy 𝒖ෝ௘
௜ 

(see Equation (1)) in the time-step 𝑖 is an outlier. Also, when 2) an abnormal behavior 
is identified in the moment-curvature rules, e.g., the Roufaiel and Meyer concrete 
model. It is important to consider smoothing all the element rigidity changes in the 
same direction. 
 

𝒖ෝ௘
௜ ൌ ଵ

ଶ
𝒅𝒆

௜
்𝐾௘

௜𝒅𝒆
௜

           (1) 
 Let 𝒅𝒆 be the displacements in the element 𝑒 DOFs and 𝐾௘ be the element stiffness 
matrix. 
 

 The method used to find outliers corresponds to the one developed by Grubbs, as 
this method has been greatly validated [10]. The expression (2) summarizes the 
Grubbs procedure. Thus, if some value does not meet the inequality, it will be 
considered an outlier. 
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       (2) 

 In Equation (2), 𝑛 is the size of a general list 𝑏, 𝛽 is the significance, e.g., 𝛽 ൌ 0.1, 
𝑡ఉ/௡,௡ିଶ is the statistical 𝑡 of Student with a significance scaled by the number of 
samples and a degree of freedom (different from the structural DOFs) equal to 𝑛 െ 2.  
 
2.2  Nonlinear Plastic Length for High-Order Element 
 

An important contribution of this work has been to develop a fashion to calculate the 
stiffness matrix of an element with different constant rigidities along it. The solution 
was to transform the problem basis. The flexibility method in nonlinear analysis 
obtains an equivalent unique stiffness element using in-series approaches. That is why 

the stiffness’s integral limits of  𝐾௘ ൌ ׬ 𝑩்𝑫𝑩𝜕𝑥
௅

଴  cannot change when different 
rigidities exist; if they do, incoherent results will be obtained. Rather the unique 
stiffness element has to be converted into an in-parallel problem by using continuous 
functions to represent the rigidity variations appropriately. For that reason, the more 
suitable functions used were a set of Sigmoid curve functions. Therefore, Equation 
(3) can be applied. 
 

𝐾௘ ൌ ෍ න 𝑩்𝑫𝒓𝑩𝜕𝑥

௅

଴

௡തିଵ

௥ୀଵ            (3) 
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 Let 𝑟 and g be the segment numbering, 𝐸𝐼തതത௬ be the segment element rigidity in local 

axis 𝑦, ∆𝐸𝐼തതത௬௥
 equals ቀ𝐸𝐼തതത௬௥ାଵ

െ 𝐸𝐼തതത௬௥
ቁ, 𝑛ത be the number of element segments, 𝑙 be the 

segment length, 𝜎ሺ∙ሻ be the sigmoid function expressed as  
𝜎ሺ𝑎ሻ ൌ ଵ

ଵା௘ష|ಶ಺തതതത೘ೌೣ|ሺೌሻ, and ∅௖𝐿ଶ be the section shear coefficient multiplied by the 

element length. 
 

 Equation (3) states the general expression of a Timoshenko element which can be 
solved by the Gauss quadrature integration method; here, the nodes and Gauss points 
do not need to coincide. In the interest of simplifying the diverse equations and 
consequent algorithms, the Barlow points are not being used. Yet, the usage of the 
number of DOFs in every plane has proved to be enough to obtain accurate results. 
 

 By substituting Equation (3) into (1), we can obtain the energy in the plastic length 
region (see Equation (5)). 𝑚௥

௘. from Equation (5) turns out to be the moment evaluated 
in the moment-curvature diagram. 
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2.3  Additional Techniques 
 

Other three well-known procedures can be used to increase the analysis stability. 
Because high-order interpolation functions can result in spurious frequencies, Ritz 
modal shapes using the straightforward Gramm-Schmidt process can prevent the 
excitation in directions that do not need to be studied. Aside from that, regarding the 
Runge phenomenon, a different distribution of nodes from equidistant locations 
should be used, like Lobatto, Legendre, or Chebyshev approaches. Previous works 
have shown remarkable results with the Lobatto and Chebyshev node distributions for 
high-order interpolations. Finally, a Reduced Integration scheme can be used in some 
elements to improve the stability and accuracy of the solution. In a typical finite 
element analysis, the governing equations are integrated over each element in the 
mesh using a numerical integration scheme, such as Gauss quadrature. The integration 
order is typically chosen to be equal to the polynomial order of the shape functions to 
ensure that the integral is exact for polynomials of that order. However, this can lead 
to numerical instability for problems with high-order shape functions, particularly if 
the mesh is not sufficiently refined. The reduced integration method involves using a 
lower-order numerical integration scheme to solve the governing equations, typically 
one or two orders lower than the full integration order. 
 

2.4  P-Adaptive Method for Frame Structures 
 

The shape functions for structural analyses were developed by interpolating the 
internal DOF displacements, and it is assumed that the same functions are used to 
interpolate the internal DOF forces, see Equation (6). 
 

𝒎ഥ ∗
𝒚 ൌ 𝑵𝒎𝒚

∗             (6) 
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 Let 𝒎ഥ ∗
𝒚 be the continuous equation of the element moments in the local axis 𝑦, 𝑵 

be the shape functions, and 𝒎𝒚
∗  be the prescribed moments in the element DOFs. 

 

 The assumption taken in (6) is made since it is considered every element segment 
embraces a linear correspondence between displacement and forces, even in nonlinear 
analyses, for every iteration uses a corresponding linear force-displacement relation. 
Internal forces of the element can also be calculated with constitution and kinematics 
considerations, as stated in Equation (7). 
 

𝑚ഥ௬ ൎ 𝑫ℒଶ𝑵𝒅𝒙𝒛           (7) 
 The truncated error can be calculated using (8), and the base of p-adaptive methods 
is to reduce that error subsequently normalized. 
 

𝑒௠ ൎ 𝑚ഥ ∗
௬ െ 𝑚ഥ௬           (8) 

 In linear analyses, the maximum permissible error 𝜂̅ will be established after 
various iterations (see Equation (9)). Nonetheless, in nonlinear analyses or time-
history analyses, 𝜂̅ can be obtained within the first steps of the procedures, where the 
global results will not be affected. 
 

𝜂̅ ൎ max
௜∈௡

𝑇௡ ൬∑
௘೘೐೗

௠೤𝒆𝒍

௡௘௟
௘௟ୀଵ , 𝛽൰

௡ൈଵ

ሺ𝑖ሻ        (9) 

 The maximum permissible error determination has been a problem solved 
differently by other authors [11]. In this work, the problem identified was that the 
internal forces of some elements could tend to zero, so the related results of 𝜂̅଴ will 
tend to be infinitive, which will bring spurious outcomes. For that reason, the 
effectively proven proposal is that outliers’ values have to be discarded from 𝜂̅଴. The 
method used corresponds to the one developed by Grubbs, stated in Equation (2).  
 

 Once 𝜂̅ is get, the permissible error 𝑒̅௡௘௟ is obtained using the total displacement 
divided by the number of elements 𝑛𝑒𝑙 as indicated in Equation (10), where 𝑛𝑒𝑙 is the 
number of elements. Finally, the error can be calculated using the discrete Sobolev 
space norm and later normalized in 𝜉௘, in such a way that an optimal order 𝑝 or 
number of element divisions ℎ can be found if 𝜉௘ ൌ 1. 𝜉௘௟ is calculated with (10). 
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ቀ∑ ௘೘

೅ ௘೘
೙೐೗
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భ
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        (10) 

If 𝜉௘>1 the order must be refined. 
 

2.5  Pseudo-Algorithm 
 

As described before, the proposal of this study is to use an adaptive system complexity 
based on Hermite interpolation to reduce and restore the additional internal nodes in 
the elements to reduce the complexity system 𝐶. Table 1 states the pseudo-algorithm 
for time-history analysis with high-order interpolation functions. The new variables 
presented are the system responses 𝑞௜, 𝑞ሶ௜ , 𝑞ሷ௜; they correspond to the system 
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displacement, velocity, and acceleration. 𝐺𝐼𝑂𝑅௘ is the element’s Gauss Integration 
Order Reduction numer. Furthermore, the Round-off error normalized to one can be 
calculated using Equation (11) where 𝜅̅ሺ𝑀ିଵ𝐾ሻ is the condition number of the system 
inverted mass and stiffness matrices, and 𝜀 is the Machine Epsilon number. 
 

𝜀ோ௢௨௡ௗି௢௙௙ ൌ 𝜅̅ሺ𝑀ିଵ𝐾ሻ√𝜀         (11) 
Procedure Algorithm for Structural Time-history Analysis 
1: begin 
2:  Initialize variables 
3:  𝐶௡௨௠ ൌ 0 
4:  𝑟𝑒𝑓𝑖𝑛𝑒 ൌ 𝑇𝑟𝑢𝑒 
5:  𝐺𝐼𝑂𝑅௘ ൌ 0 
6:  for all ground motion points 𝑖: 
7:   Ritz modes decomposition 
8:   using the Generalized Alpha method with Newton-Raphson: 
9:    𝑞௜, 𝑞ሶ௜, 𝑞ሷ ௜ ← for principal DOFs and internal nodes using 𝑞௜ିଵ, 𝑞ሶ௜ିଵ, 𝑞ሷ௜ିଵ 
10:   𝐾௘

௜ ←evaluated with Moment-Curvature curves, considering 𝐺𝐼𝑂𝑅௘, and Equation (3) 
11:   𝑚௥

௘
௜ ←from Moment-Curvature evaluation 

12:   if the Moment-Curvature evaluation has an unexpected behavior: 
13:    𝜀௥

௘ ൌ 𝑇𝑟𝑢𝑒 
14:   else: 
15:    𝜀௥

௘ ൌ 𝐹𝑎𝑙𝑠𝑒 
16:   𝑢ො௘

௜ ←using Equation (6) 
17:   if 𝜉௘௟ ൐ 1 ൅ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒ଵ and 𝑟𝑒𝑓𝑖𝑛𝑒 ൌൌ 𝑇𝑟𝑢𝑒: 
18:    𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑛𝑜𝑑𝑒𝑠௘ ൌ 𝑓ሺ𝜉௘ሻ 
19:    𝑞௜, 𝑞ሶ௜, 𝑞ሷ ௜ ← for principal DOFs and for internal nodes using interpolation 
20:   else: 
21:    𝑟𝑒𝑓𝑖𝑛𝑒 ൌ 𝐹𝑎𝑙𝑠𝑒 
22:    if 𝜀ோ௢௨௡ௗି௢௙௙ ൐ 1 ൅ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒ଶ: 
23:     Break all 
24:   𝐶௡௨௠ ൌ 𝐶௡௨௠ െ 1 
25:   if ሺ𝑢ො௘

௜ ൒ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒ଷ or 𝜀௥
௘ ൌൌ 𝑇𝑟𝑢𝑒ሻ and 𝐶௡௨௠ ൑ 0: 

26:    𝐺𝐼𝑂𝑅௘ ൌ 1 or 2 
27:    if 𝜀௥

௘ ൌൌ 𝑇𝑟𝑢𝑒: 
28:     𝐶௡௨௠ ൌ 4 
29:     𝑞௜, 𝑞ሶ௜, 𝑞ሷ௜ ← only keeping the responses of the principal DOFs 
30:   else if 𝐶௡௨௠ ൌൌ 1: 
31:    𝑞௜, 𝑞ሶ௜, 𝑞ሷ ௜ ← for principal DOFs and for internal nodes using interpolation 

Table 1: Procedure Algorithm for structural time-history analysis. 
 
3  Results 
 

For this paper, the tested buildings are made of concrete, where the moment-curvature 
curves were found using the procedure described in Monti and Petrone [12]. 
Additionally, the pinching effect was considered to prove the proposed formulation’s 
robustness. Furthermore, the structural responses were compared with OpenSees or 
Seismostruct for validation. About the external loads, the ground motions used were 
filtered and line-base corrected. The earthquakes used were Concepción-Chile (2010) 
and Tohoku-Japan (2011) ground motions because they produced naturally strong 
shakes and had different main frequencies. The selected earthquakes meet two desired 



8 
 

conditions: 1) large accelerations that take the structure into a nonlinear range and 2) 
different frequencies that help to verify the formulation robustness. The main 
frequencies obtained from a Fast Fourier procedure of the Concepción ground motion 
are between 0.30 Hz and  1.95 Hz, and the Tohoku motion is  4.30 Hz. 
 

 The examples presented in this paper are made of concrete with a 21881978.89 
KN/m2 Young modulus, 21000 KN/m2 stress, 24 KN/m3 specific weight, and 590000 
KN/m2 yield stress rebars. The buildings use an additional reactive weight of 7.5 
KN/m2, and their elements were sized in such a way that the structural system passes 
into the nonlinear range, as follows: 
 

Building 1): One-floor 3D regular building with one span. 
Building 2): Four-floor 3D regular building with two spans. 
Building 3): Six-floor 3D irregular building with metallic energy dissipation devices. 
 

 The following results are the most significant for the problem posed. 
 

1) Figure 1 presents the number of function orders vs. the truncated error average of 
the elastic structural behavior instants of the time history analyses for Building 1, 2, 
and 3. It is interesting to appreciate that all the curves have the same tendency. 
Without internal nodes (second order), the error is a very large number that could be 
a problem for h-adaptive methods. Then, we can see that the error increases with one 
internal node (fourth order), and in all the cases, the error decreases to values near one 
and zero after two internal nodes (sixth order). 
 

 
 

Figure 1: Truncated and round-off error of Buildings with real ground motions. 
 

2) Because Building 3 shows greater variability in its response to the Concepción 
earthquake, only its results are presented in Figure 2. Figure 2a shows the 
displacement of the building’s roof vs. the time. 
 

3) Figure 2b shows a schematic representation of structural damage on the irregular 
building for the second order and an order using p-adaptive methods. The black 
segments in Figure 3 indicate that the element end has yielded. The Concepción 
ground motion was used for this example because its frequencies produced more 
damage to the structures proposed. With p-adaptive methods, principal columns and 
beams needed two additional nodes, and the rest of the elements remained without 
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Figure 2b. p-adaptive 

internal nodes. There is different damage in one column, sixteen beams, and two 
braces. 
 

 
 
 

Figure 2: Irregular building results (Building 3). Figure 2a. Roof displacement vs. 
time. Figure 2b. Structural damage differences between p-adaptive and 2nd-order 

elements. 
 
4  Conclusions and Contributions 
 

 This work exposed an error based on truncation for the shape function order. This 
error is not usually checked in structural analyses, which are the typical calculations 
for buildings, bridges, and other infrastructures. That is why a general procedure for 
a Timoshenko high-order element was presented. As well the equations used to 
determine the truncated error were presented. Because there are no studies that show 
how to calculate a nonlinear plastic length on a high-order element, a simple way was 
introduced using sigmoid function sets. Additionally, an adaptive procedure was 
studied. 
 

 For the p-adaptive method, the process of normalizing the truncated error, the 
maximum permissible error can tend to the infinitive, so a procedure to identify outlier 
values was proposed and verified with the examples posed. 
 
 In the examples, it was found that in all the cases, the optimum number of 
additional internal nodes is two or three, and if less than two nodes are considered, the 
produced error is a large value. Additionally, it was shown that there could be 
differences from the structural responses when the truncated error is reduced. 
 

 Generally, dynamic analyses applied to complex structures with high nonlinearities 
can produce physical instability. The property of complexity was defined in this work, 
and herein was shown that this property increases when the elements are refined. 
Therefore, this study has posed a process to adapt the complexity according to possible 
physical instabilities identified by controlling the element potential energy and 
moment-curvature abnormalities. The change of complexity was made through 
Hermite interpolations. 
 

Figure 2a 
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