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Pontificia Universidad Católica de Chile, Santiago, Chile
3Center for Research and Innovation in Bioengineering,
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Abstract

The concept of mechanobiological equilibrium (MBE) is incorporated into the finite
kinematic growth (KG) model for growth and remodelling (G&R), in order to propose
an alternative, rate-independent formulation (MBE-KG). The method proposed yields
non-transient solutions to G&R problems and quasi-equilibrated evolutions when im-
posed perturbations are slow relative to the adaptive process. We perform a finite
element implementation of the method and show its performance on some illustrative
problems involving the simulation of aneurysms on a single-layered artery model.
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1 Introduction

One of the main characteristics of biological materials is their ability to grow (change
mass) and remodel (change structure) in response to mainly mechanical and biochemi-
cal stimuli. Cells strive to attain, preserve, or regain a homeostatic [1] mechanical state
and ultimately, under stable physiological conditions, attain a state of mechanobiolog-
ical equilibrium [2]. Homeostasis and mechanobiological equilibrium are analogous
concepts, mathematically represented by a unit value of a stimulus function [3].

In this paper, we present a rate-independent finite kinematic growth (KG) model
for growth and remodelling (G&R) of soft tissues, by imposing mechanobiological
equilibrium on its classical, rate-dependent counterpart first proposed in [4]. To our
knowledge, this approach has only been applied to the constrained mixtures (CM)
G&R model [5, 6], in which constituent-specific hyperelastic descriptors and rates of
production and removal are considered [7].

2 A mechanobiologically-equilibrated finite kinematic
growth model

The mass balance for open systems is governed by the evolution equation, ρ̇+ρ div(v) =
m̄, where ρ is the spatial mass density, ρ̇ its material time derivative, div(v) = J̇/J is
the velocity, with J = det(F) the Jacobian determinant of the deformation gradient,
F ∈ GL(3), and m̄ = m − r ̸= 0 is the net rate of mass density, defined in terms
of true rates of mass density production (m > 0) and removal (r > 0), that in turn
defines a stimulus function, Υ = m/r > 0 [3]. The stimulus function represents the
enhancement (Υ > 1), reduction (Υ < 1) or balance (Υ = 1) of mass production with
respect to removal.

A kinematic growth (KG) model postulates a multiplicative decomposition of the
deformation gradient [4]:

F = FeFg, (1)

into an elastic part Fe, that generates mechanical stresses, and an inelastic (growth)
part Fg, that represents a local addition or subtraction of mass. Usually, the growth
component of the deformation gradient is characterized via a single scalar variable
(growth multiplier, ϑ), such that det(Fg) = ϑ. For instance, in isotropic volumetric
growth, Fg = ϑ1/31, where 1 is the second-order unit tensor.

Since soft tissues tend to preserve their overall density, ρ̇ = 0. Further assuming an
incompressible elastic behavior (i.e. det(Fe) = 1), the mass-balance equation takes
the form [3], ϑ̇/ϑ = k (Υ− 1), where k = r/ρ is a rate parameter.

Let C = FTF, be the right Cauchy-Green strain. Then, as a consequence of the
multiplicative decomposition for the deformation gradient (Equation 1), the elastic
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Cauchy-Green strain is, Ce = F−T
g CF−1

g = F−T
g ⊙ F−T

g : C, where (A⊙B)ijkl =
AikBjl, with A, B second order tensors.

A Helmholtz free-energy function W = J W0, of strain energy per unit refer-
ence (grown) volume, with an explicit dependence on the elastic right Cauchy–Green
strain, where W0 is the strain-energy per unit undeformed volume, allows to satisfy
the requirement of material frame indifference [8]. Recalling the dissipation inequality
in material description and imposing zero dissipation under mechanical homeostasis,
yields the second Piola-Kirchhoff stress:

Sx = 2J
∂W0

∂Ce

:
∂Ce

∂C
= J Se : F

−T
g ⊙ F−T

g , (2)

where Se = 2 (∂W0/∂Ce) is an elastic second Piola-Kirchhoff stress. The superscript
“x” in Equation (2) denotes extra stresses, representing a state out of mechanobiolog-
ical equilibrium, i.e. a value of the stimulus function, Υ ̸= 1. In that sense, under
mechanobiological equilibrium, if Fh = FehFgh describes the deformation between
B0 and any homeostatic configuration Bh, the equilibrated Cauchy stress is defined as:

σh = σx
h − ph1 = J−1

h Fh (S
x
h + Sp

h)F
T
h = J−1

h Fh

(
Sx
h − Jh phC

−1
h

)
FT

h (3)

where ph is a Lagrange multiplier used to enforce the constraint Υh = 1. Equation
(3) also approximates the stress of quasi-equilibrated G&R processes, in which the
characteristic rate for adaptation is faster than the rate of change of the stimulation
[5, 6].

Since mechanobiological equilibrium is expressed as a single nonlinear algebraic
equation (Υh = 1), and due to Equation (3), the stress invariants σi (i = I, ..., N ),
can be expressed in terms of scalar products involving Ch, Sx

h, Jh and ph, allowing to
determine a (generally implicit) relation that yields the (a priori unknown) volumetric
contribution to stress [6].

A linearized form for the stimulus function (that neglects differences in wall shear
stresses), proposed and adopted by previous works to characterize arterial tissue [5,9,
10] is, Υ(t) = 1+Kσ ∆σ(t), where ∆σ(t) = (σI(t)/σI

o − 1), Kσ is a gain parameter
for mass production, σI = tr(σ) is the first invariant of stress, and the subscript “o”
denotes a quantity of an original homeostatic configuration.

The material tangent stiffness tensor involved in an incremental mechanobiologi-
cally equilibrated evolution, can be derived from the consistent linearization of Equa-
tion (2) – as a function of independent variables, Jh and Ceh = FT

ehFeh – and the
consideration of an evolving homeostatic Lagrange multiplier, ph. The Lagrange mul-
tiplier contribution is derived from the evolution – consistent with Υh = 1 and Υ̇h = 0
– of the stress term, Sp

h = −JhphC
−1
h [6]. The resulting tangent stiffness tensor lacks

major symmetries in general.
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3 Results

In this section, the kinematic growth model presented in Section 2, is solved for a
single-layered prototypical mechanoadaptive artery. The main goal of this example is
to replicate case studies from [11], which adopted a mechanobiologically-equilibrated
constrained mixtures (MBE-CM) G&R model to study the initiation and progression
of thoracic aortic aneurysms, assessing the influence of several risk factors.

The arterial-wall soft-tissue is modeled considering three load-bearing constituents:
elastic fibers (consisting of elastin and associated microfibrils, denoted by a super-
script “e”), collagen fibers (denoted by a superscript “c”) and smooth muscle cells
(denoted by a superscript “m”); with mass fractions – ratios between equilibrated,
constituent-specific current mass densities and the current overall mass density of the
tissue, the latter assumed constant – ϕe, ϕc and ϕm respectively, satisfying ϕe + ϕc +
ϕm = 1. The original mass fractions, ϕe

o, ϕ
c
o and ϕm

o , are related to their evolved
counterparts by the Piola transformation, ϕξ

h = ϕξ
o/Jh (ξ = e, c,m) [6].

Since the kinematic growth model assumes material homogeneity, we consider
that all constituents turnover mass continuously (an unrealistic assumption for elastin,
which is produced during the perinatal period and has a half-life of decades [6]). Let-
ting all constituents respond to changes in stimuli with identical out-of-equilibrium
stimulus functions and mass-specific rates for removal, and integrating the mass-
balance equation, gives Jhϕ

ξi
h /ϕ

ξi
o = Jhϕ

ξj
h /ϕ

ξj
o , (ξi, ξj = e, c,m). Therefore, under

these assumptions, current mass fractions are constant with time, i.e. ϕξ
h = ϕξ

o = ϕξ.

For the hyperelastic response, we take into account the contribution of three con-
stituents via a standard rule-of-mixtures, W0 = ϕeW e

0 + ϕcW c
0 + ϕm Wm

0 . The
amorphous elastin-dominated matrix is modeled using a Neo-Hooke model, W e

0 =
(ce/2) (FeG

e : FeG
e − 3), where ce is a shear modulus and Ge = Ge

r ar ⊗ ar +
Ge

θ aθ ⊗ aθ + Ge
z az ⊗ az, is a (volume-preserving and symmetric) deposition stretch

tensor for elastin, with Ge
r = 1/(Ge

θG
e
z), G

e
θ and Ge

z deposition stretches for elastin
along the radial (r), circumferential (θ) and axial (z) directions in the undeformed con-
figuration – ar, aθ and az respectively. For the hyperelastic contribution of collagen
and smooth muscle cells, we assume Fung-type models:

Wα
0 =

cα1
4cα2

n∑
i=1

exp
[
cα2

(
CeG

α2 : aα
i ⊗ aα

i − 1
)2]− 1, (α = c,m), (4)

where cα1 , cα2 are material parameters, aα
i are unit vectors along (either collagen-fibers

or smooth muscle cells) orientations in the undeformed configuration and Gα are de-
position stretches (α = c,m). It is assumed that smooth muscle cells are oriented
along the circumferential direction only (therefore n = 1 and ac = aθ), whereas
collagen-fibers are considered oriented along the axial direction, circumferential direc-
tion and diagonally (at angles ±α0 with respect to the axial direction), therefore n = 4,
further incorporating orientation-specific fractions, βz, βθ and βd = 1−βz−βθ, for the
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axial, circumferential and diagonal directions respectively [12]. Following [13], the
referential angle α0h of diagonal collagen fibers families is set to evolve during G&R
according to, tanα0h = (λθ/λz) tanα0, where λθ and λz are local circumferential
and axial stretches (see [6]).

Deposition stretch tensors are time (and/or space) dependent entities specific to the
constrained mixtures G&R model that represent newly deposited constituents [5, 6].
In these examples, deposition stretches are considered constant and are included in
order to attain the same order of magnitude for strain-energy to that reported by [11].

The set of (baseline) material parameters for an illustrative mouse descending tho-
racic aorta, adopted from [11] and used in the examples of this work, are listed in
Table 1.

Constituent mass fractions ϕe, ϕm, ϕc 0.34, 0.33, 0.33
Collagen relative fractions βz, βθ, βd 0.056, 0.067, 0.877
Elastic material parameters ce, cm1 , cm2 89.71 kPa, 261.4 kPa, 0.24

cc1, c
c
2 234.9 kPa, 4.08

Diagonal collagen orientation α0 29.9 deg
Deposition stretches Ge

θ, G
e
z G

m, Gc 1.90, 1.62, 1.20, 1.25

Table 1: Representative baseline model parameters for a mouse descending thoracic
aorta (adopted from [11]) used in the examples performed in this work.

We implemented the present rate-independent kinematic-growth framework for
G&R in the open source software FEBio [14]. From a numerical perspective, the
implementation resembles that of a hyperelastic material with a non supersymmetric
tangent stiffness tensor.

Solutions proceed in two stages. In Stage I, the (pre-stressed) original-homeostatic
in-vivo state is computed. At the end of Stage I, the volumetric Cauchy stress (σvo)
is stored, which plays the role of a (local) material parameter for Stage II. In Stage II,
the particular equilibrated solution for this G&R formulation (the evolved-homeostatic
configuration) is determined. To that end, we assume an isotropic volumetric growth
deformation gradient, following earlier studies that have adopted it for modeling of
stress-driven cardiac [15] and arterial-wall growth [16].

We consider a 3D finite element (FE) geometry (shown partially in Figure 1) of
an initially cylindrical arterial segment with inner radius a0, thickness h0, and length
l0 = 15 mm in its undeformed configuration. The FE mesh comprises NrNθNz =
1× 20× 20 = 400 displacement-based 3D quadratic elements with full 3×3×3 Gauss
integration, which showed consistent results when compared to other discretizations
in a mesh convergence study [11]. We fixed axial displacements at both ends, with
rigid body motions suppressed. As an external (pre-)load, we apply an in-vivo value
of blood pressure (Po = 13.98 kPa) on the inner surface of the cylinder and compute
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the inner radius ao = 0.647 mm, thickness ho = 0.04 mm, and length lo = l0, of the
original homeostatic configuration.

Quasi-static analyses were performed in 10 incremental steps, without line searches
during Newton-Raphson iterations. Elapsed total CPU times ∼ 1 min on a single CPU
processor at 2GHz in a Lenovo ThinkBook-14-G2 with 16GB RAM.

To drive quasi-static G&R FE simulations, following [6,11] we consider an degra-
dation of elastin and loss of collagen cross-linking, while preserving inner pressure
(Ph = Po). Elastin degradation and loss of collagen cross-linking are achieved by
reductions of the material parameters ce and cc1 respectively, localized at an axial co-
ordinate zom = lo/2 and a circumferential coordinate θom = π (both in the reference
homeostatic configuration) and are set to diminish gradually with distance to an ax-
ial coordinate zo and a circumferential coordinate θo. If ϕ is a property to be locally
reduced, then:

ϕ(zo, θo) = ϕend+(ϕcen − ϕend) exp

(
−
∣∣∣∣zo − zom

so

∣∣∣∣ν) exp

(
−f

∣∣∣∣θo − θom
sθ

∣∣∣∣ν) , (5)

where zo ∈ [0, lo] and θo ∈ [0, 2π], ν = 5 is an exponential decay parameter and sz =
2.5mm, sθ = π/3 are deviation parameters for the axial and circumferential direction
respectively. Moreover, ϕend and ϕcen are values of the parameter near the ends (zo =
0, lo) or within the central/apex (zo = lo/2, θo = π) regions of the computational aorta.
For axisymmetric lesions f = 0, and for asymmetric lesions, f = 1.

We performed simulations using both the current mechanobiologically equilibrated
kinematic growth (MBE-KG) model and the mechanobiologically equilibrated con-
strained mixtures (MBE-CM) model [3, 5, 6, 11], in order to examine the differences
in the response between methods.

We simulated different conditions (severity of lesions) depending on the method
used (either MBE-CM or MBE-KG), and type of aneurysm (either axisymmetric or
asymmetric), aiming at capturing the same maximum dilatation with both methods.
For axisymmetric lesions, we applied a 51% loss of elastic fiber integrity in the CM
model and a 100% degradation of elastin along with a 80% loss of collagen cross-
linking in the KG model, to reach a maximum dilatation of 220% with both methods
(Figure 1, A and B). To induce asymmetrical lesions, we applied a 44% reduction of
elastic fiber integrity using the CM model. In the KG model, we again introduced
complete elastin degradation and a 99% decline in collagen cross-linking; leading to a
maximum dilatation of 58% using both approaches (Figure 1, C and D). Therefore, in
both types of aneurysms, the KG method required a higher severity of injury compared
to the CM method in order to achieve a similar response.

Figure 1 reveals that the mechanical response is not isochoric. Particularly, as
stated by [11], graded localized losses of elastic fiber integrity and collagen-fiber
cross-linking can result in G&R responses that cause localized volume change (di-
latation) of the aortic wall.

6



Kinematic growth Constrained mixture

A B

C D

A
xi

sy
m

m
et

ric
A

sy
m

m
et

ric

Figure 1: Relative volume of fully developed, mechanobiologically equilibrated, ax-
isymmetric (A, B) and asymmetric (C,D) dilatations of an initially cylin-
drical aortic segment caused by a localized loss of elastic fiber integrity
and collagen-fiber cross-linking – reduction of parameters ce and cc1 accord-
ing to Equation (5) – using the mechanobiologically-equilibrated (MBE)
kinematic growth model (first column) and the MBE constrained-mixtures
model (second column).

Moreover, decrements in volume are observed in all cases at the end regions of the
computational model, indicative of a mechanical maladaptation due to elastin degra-
dation and loss of collagen cross-linking (Figure 1).

Disagreements between the response of the current MBE-KG model and the MBE-
CM model, can be explained by differences in the formulation of the methods. Specif-
ically, in the CM model mass fractions per unit current volume are variable with
time, whereas under the assumption of material homogeneity, mass fractions in the
KG model remain constant. Moreover, in the CM model formulated and adopted
by [5,6,11], turnover of elastin is not allowed since G&R times considered therein are
shorter than the half-life of that constituent. These fundamental methodological and
physiological discrepancies between MBE formulations affect both stress and stiff-
ness.

The ability of the current MBE-KG model at replicating the response of the MBE-
CM model could be improved by adopting a different, more complex or appropriate
form for the growth deformation tensor Fg. For instance, the isotropic volumetric
form utilized here can be replaced by an anisotropic (transversely isotropic) growth
deformation tensor, arguably more suitable to account for the characteristic arterial
wall microstructure by incorporating preferential growth directions [15, 17, 18].
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4 Conclusions

In this work, we propose a mechanobiologically equilibrated, steady-state formulation
for the finite kinematic G&R theory of soft tissues.

The formulation is time-independent, therefore, for a given set of external stimuli,
integration over the time domain and tracking the production and removal history is
unnecessary, saving computation time.

For illustrative purposes, the method is applied to examples of axisymmetric and
asymmetric aneurysms on a single-layered, idealized cylindrical artery.

The current mechanobiologically-equilibrated kinematic growth theory is able to
achieve grown and remodeled, steady-state configurations of soft tissues with intricate
geometries and/or loads within a finite-element framework, and its capabilities mainly
rely on being able to predict long-term outcomes, which arguably matters most to
medical professionals and patients [5, 19].

Despite its advantages, the current time-independent formulation is generally in-
effective for the analysis of truly time-dependent responses of soft tissues, where the
full time-dependent formulation will continue to be required in order to determine the
evolution of the growth process under particular physiological and pathophysiological
scenarios.

Further research is required to improve the understanding about the characteristics
of mechanical stimuli driving the G&R process.
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