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Abstract

The paper presents how the uncertainty of material parameters of fine grained soils
propagate to the results of numerical simulation. In particular, the posterior distribu-
tion describing the uncertainty of the five basic parameters of the hypoplastic model
for clay is considered in two scenarios. In the first scenario, only the marginal distri-
butions material parameters are considered independently and no correlation between
them are assumed. In the second approach the complete multivariate posterior dis-
tribution is assumed in which the parameters are mutually correlated. This posterior
distribution shows relatively low correlation between most of the parameter pairs with
exception to the slope of primary consolidation line φ and its intercept N . The signifi-
cantly higher variance of the simulation results obtained for the uncorrelated marginal
distribution show that the correlations within the posterior distribution need to be con-
sidered in stochastic geotechnical simulations.

Keywords: model calibration, parameter uncertainty, constitutive model for clay,
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1 Introduction

A numerical analysis of geotechnical structure typically combines data from various
areas of geotechnical survey. These data often show some degree of uncertainty. The
goal of a stochastic analysis is to propagate the uncertainty of the input variables to
the quantities of interest, i.e. structure deformation or distribution of internal forces.

The uncertainties of the data entering a simulation of geotechnical problems come
of number of different sources [1], with the most obvious one being the heterogeneity
of soil profiles [2, 3].

Even for homogeneous material, the parameters derived from laboratory or field
tests can be relatively scattered [4, 5]. This is given by the variability of the tests
themselves as well as the calibration process that interprets the laboratory and in-situ
test results and determines the parameters of chosen constitutive law. The choice of the
calibration process can also range from relatively straightforward parameter sensitivity
analysis [6, 7] to a general optimisation techniques such as machine learning [8].

In some cases, the calibration uncertainty can be directly implemented into the con-
stitutive laws [9] but it is more common to acknowledge the uncertainty directly to the
material parameters – or other data entering the simulation – and perform stochas-
tic simulations. The commonly used approaches to stochastic analysis in geotechnics
are the Monte-Carlo method [2, 10, 11] and Latin hypercube sampling [12]. Another
approaches exploit random sets [13] or crate meta models based either on Bayesian
networks [14, 15] or on the polynomial chaos expansions [16, 17].

Out of the many different sources of uncertainty in material parameters this paper
focused on one: the uncertainty due to limited laboratory data available in calibration
procedure. The term calibration here means a deterministic algorithm that consumes
the data obtained form laboratory tests and returns material parameters of chosen ma-
terial model. And since the the user can supply different amount of laboratory data,
the material parameters obtained from the calibration procedure also differ.

This uncertainty quantified in form of joint probability distribution is used here as
input for numerical simulation of two basic geotechnical test: undrained shear test and
1D compression test also known as oedometric test.

2 Methods

The hypoplastic model for clay [18] with five basic parameters φ, κ, λ, N and ν is con-
sidered in this study. The utilised calibration procedure combines a direct parameter
determination with optimisation techniques. A full description of the calibration algo-
rithm is provided in [19,20]. To calculate the parameters of the hypoplastic model for
clay the procedure requires the data of at least two different laboratory test. Neverthe-
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Figure 1: Posterior predictive distribution of five material parameters of the hypoplas-
tic model for clay. The plots on diagonal show kernel densities (smoothed
histograms) of marginal distributions wheres the scatter plots visualise the
correlations of the parameters.

less, if data form more tests are supplied, all of them are considered equally weighted.
As indicated above, this arbitrariness in the choice of calibration input is the source of
uncertainty considered here.

A hierarchical stochastic model was developed and its parameters were inferred
in [21]. The Bayesian model inference makes easy to obtain posterior predictive dis-
tribution of material parameters with known mean. This means that entire joint dis-
tribution is obtained for a chosen set of material parameters. A pair plot of five basic
material parameters of the hypoplastic model for clay is shown in Figure 1. The points
in the scatter plots are the elements of the Markov chains, i.e the direct result of the
Bayesian inference, and serve as the input for the numerical simulations.

Two very simple simulations were performed with these scattered material param-
eters: the undrainedtriaxial shear test and the constrained 1D compression test. The
undrained triaxial shear tests starts from isotropic stress of 100 kPa and the specimen
is loaded up to compressive vertical strain of 0.05. The constrained 1D compression
test starts from unstressed state and the specimen is loaded up to compressive strain
of 0.1.
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Figure 2: Results of the simulations of undrained triaxial shear tests. Equivalent devi-
atoric stress (von Mises stress) q is plotted as a function of the axial strain
εax.

3 Results

The numerical simulation of the two laboratory tests resulted in scattered curves, as
displayed on Figures 2–5. Each curve correspond to a simulation with different set
of material parameters and characterise the mechanical response corresponding to the
individual point in the posterior predictive distribution on Figure 1. These points are
drawn from the posterior predictive distribution around the mean values µφc = 30◦,
µκ∗ = 0.01, µλ∗ = 0.1, µN = 1.0, µν = 0.3. The blue curve in each figure shows the
results of the simulation with these mean values. The particular mean values of µφc ,
µκ∗ , µλ∗ , µN and µν were chosen somewhat arbitrary to represent some typical values
for low plasticity clay.

The simulations of the undrained shear tests are plotted in Figures 2 and 3. The
results in figures labelled as correlated are obtained directly for the points in the pos-
terior predictive chains, i.e. the points displayed in Figure 1. On the other hand, the
results in the figures labelled as uncorrelated are generated from the marginal densi-
ties, i.e. from the 1D distributions displayed on diagonal of Figure 1. The marginal
distribution are therefore assumed as uncorrelated.

The results obtained for uncorrelated marginal posterior distributions are presented
bellow.

4 Conclusions

Several conclusions can be drawn from the results in this study. First, the results show
that the complete joint probability distribution including the correlations between the
parameters should be used as an input for stochastic analysis. When independent
uncorrelated marginal distribution are used as the input of the stochastic simulations,
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Figure 3: Stress paths of the simulations of undrained triaxial shear test. Equivalent
deviatoric stress (von Mises stress) q is plotted as a function of the mean
stress p.
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Figure 4: Results of the simulations of constrained 1D compression test. Axial stress
σax is plotted as a function of the axial strain εax.
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Figure 5: Results of the simulations of constrained 1D compression test. Void ratio is
plotted e is plotted as a function of the logarithm of the axial stress σax.

the variance of the results, i.e. the dispersion of the stress strain curves and the stress
paths, increased substantially. This finding therefore discourages for using any kind
of confidence or credible intervals as a sole mean to communicate the uncertainty
of material parameters. The correlation coefficients between the material parameters
should not be neglected.

Second conclusion is about the theoretical critical state line that in case of the
hypoplastic model for clay passes through the origin of p × q space and touches the
end point of the stress path in Figure 3. The variance of the slope of the critical state
line is relatively low, when compared to the variance of stress-strain curves in Figure 2.

Finally, it can be concluded especially form Figure 4 and especially from Figure 5
that the mean of the simulation results does not correspond to the simulation results
obtained for the mean material parameters. In other words, the blue curve obtained
for the ”most typical” parameters set is not most typical curve within in the observed
bundle. This systematic bias is the consequence of the nonlinear nature of the material
model response to loading.

Acknowledgements

The financial support provided by the Czech Grant Agency, project No. 22-12178S is
gratefully acknowledged.

References

[1] J. L. Favre, Errors in geotechnics and their impact on safety, Computers & Struc-
tures 67 (1) (1998) 37–45. doi:10.1016/S0045-7949(97)00154-5.

6



[2] R. Suchomel, D. Mašı́n, Probabilistic analyses of a strip footing on horizon-
tally stratified sandy deposit using advanced constitutive model, Computers and
Geotechnics 38 (3) (2011) 363–374. doi:10.1016/j.compgeo.2010.12.007.

[3] Y. Tao, H. Sun, Y. Cai, Bayesian inference of spatially varying parameters in soil
constitutive models by using deformation observation data, International Journal
for Numerical and Analytical Methods in Geomechanics 45 (11) (2021) 1647–
1663. doi:10.1002/nag.3218.
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