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Abstract 
 

This paper is devoted to the reliability assessment of civil engineering cable structures 
subjected to various sources of environmental uncertainty as well as structural 
imperfections. Such an analysis is extremely important considering nonlinear 
character of their structural response, increasing statistical scattering of weather 
phenomena, small cross-sections and large deformations as well as usually very 
optimal character. This assessment has been completed using both the First Order 
Reliability Method (FORM) as well as the new apparatus based on the relative entropy 
approach proposed in Bhattacharyya mathematical theory. Numerical experiment  has 
been completed here using the 10th order iterative generalized Stochastic Finite 
Element Method in its displacement formulation.  
 

Keywords: relative entropy, reliability assessment, guyed steel mast, stochastic 
perturbation method 
 

1  Introduction 
 

Cable structures became popular in various civil engineering applications [1] due to 
their optimal character, but are still very challenging in the context of designing 
numerical analysis [2] and also due to difficult and expensive experimental 
verifications. They gained huge popularity due to their wide applications in steel and 
composite bridges suspensions systems, roofs suspensions in the sport stadiums, line 
railways as well as the guys supporting higher masts; some cables serve exceptionally 
in the pushover tests in the full scale experiments with steel structures.  
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There is no doubt that they are exposed to extreme environmental conditions, 
where ice loading becomes important, and even exceptional temperature decrease 
during hot summer after accidental rainfalls needs to be accounted for. Due to an 
enormous ratio of the span to the vertical displacements and lack of bending rigidity 
with remarkable dead load, an efficient verification of the limit states is still an 
important task [3]. All these aspects make reliability assessment necessary and 
complex, where a lot of uncertainties should be considered at the same time while 
using stochastic perturbation method, semi-analytical approaches or one of the 
sampling techniques [4].   

 
Therefore, the main aim in this work is some new reliability algorithm, which is 

based on the certain probabilistic divergence model [5]. This has been contrasted with 
the Cornell First Order Reliability Method (FORM) [6], where the first two 
probabilistic moments of the structural response have been determined using higher 
order iterative stochastic perturbation technique. An applicability of this new 
approach have been demonstrated for elasto-static deformation of some steel trusses 
[7], and also for elasto-dynamic response of steel halls [8]. Now it is checked in case 
of cable structures on the example of some high steel guyed mast.  

 
 

2  Governing equations  
 

The reliability index β=β(t) is investigated in this work for the solid mechanics 
problem identified by the following dynamic equilibrium equations system in the 
domain  for the given time interval [t0,tk]:  

 
 equation of motion 

 
 , 0, , ,i ij j i ku f t t t     x , (1) 

 
 constitutive equations  

 
 0, , ,ij ijkl kl kC t t t   x , (2) 

 
 geometrical equations  

 

   , , , , 0

1
, , ,

2kl i j j i k i k j ku u u u t t t     x , 
(3) 

 
 boundary conditions  

 
 0

ˆ , , ,ij j i kn t t t t   x , (4) 

 0ˆ , , ,i i u ku u t t t  x , (5) 
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 and also initial conditions  

 
0

0, ,i iu u t t  x , (6) 

0
0, ,i iu u t t  x  . (7) 

 
The displacements  iu t , and stresses  ij t  are sought from this system.  

Gaussian uncertainty sources considered here include an elastic moduli of mast 
guys, elastic moduli of mast shaft, thermal load uniformly applied to the structure as 
well as elevation-dependent dynamic wind pressure. All structural elements are 
modelled according to the Euler-Bernoulli beam theory considering the fact that the 
mast is designed with the use of tubular structural elements only; so that further 
simplifications within the initial equations system (1-6) can be provided.   

 
The reliability indices analysed here are some functions of the first two 

probabilistic moments of the structural response; this analysis is restricted to two cases 
– the Ultimate Limit State (ULS), and also the Serviceability Limit State (SLS). These 
indices must fulfil the following inequality throughout the entire time domain:  

 

 0
ˆ ˆ , , ,SLS SLS ULS ULS kt t t       x , (8)

 
where ˆ ˆ,SLS ULS   stand for the admissible values in these two states recommended by 

the designing code Eurocode 0. According to the FORM one calculates   
 

   
  

 0, , , k

E R E t
t t t t

Var R E t


    


x , 
 

(9) 

 
where E[.] and Var(.) denote the expected values and variances of the given response 
function, whereas R and E(t) correspond to the structural resistance and extreme 
dynamical effort. This equation is most frequently presented in shorter form due to a 
lack of knowledge concerning any correlation function(s) between R and E(t):  
 

     
    

 0, , , k

E R E E t
t t t t

Var R Var E t


     


x . 
 

(10)

 
Some interesting alternative is the Bhattacharyya relative entropy measuring a 
probabilistic distance in-between two distribution functions (PDFs) of R and E(t) in 
each discrete time moment. Such a relative entropy quantifies a distance of two 
different probability distributions [5] and may measure an interference of R and E(t) 
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in this case. It can be represented under the same assumptions by the following 
relation [9]:  
 

 
    
    

    
    

 

2

0

1

4

1
ln , , ,

2 2

B

k

E R E E t
H t

Var R Var E t

Var R Var E t
t t t

Var R Var E t

   


    
 
 

x

. 

 
 

(11) 

 
 
This relative entropy may be relatively easily rescaled to the variability interval of the 
FORM index using a similarity in-between its first component and the FORM formula 
to be applicable in practical reliability assessment. The following rescaling procedure 
has been proposed:  
 

 0

( )
( ) , , ,

2
B

k

H t
t t t t   x .  

 
(12) 

 
 

An initial dynamic equilibrium equations (1-6) have been discretized using 
classical procedure inherent in the Finite Element Method where non-linear dynamic 
analysis has been made; the equations of motion integration has been carried out by 
the Hilber-Hughes-Taylor (HHT) algorithm [10]. Due to remarkable slenderness of 
such a structure, and its strong mechanical nonlinearities due to formulation of cable 
finite elements, some improvement of solution accuracy have been introduced by self-
updating of stiffness matrix at each iteration. The HHT algorithm governing equation 
can be rewritten as  

 
1 1 1(1 ) (1 )

( (1 ) )
n HHT n HHT n HHT n

HHT n n HHT

x x x x

x t t

  
 

      

    

M C C K

K F

  
 (13)

 

 

 

2

1 1

1 1

1

2

1

i i i HHT i HHT i

i i HHT i HHT i

x x t x t x x

x x t x x

 

 

 

 

                 
          

  

   
 

 
(14)

 
where M, C and K denote the structural mass, damping and stiffness matrices, t  is 
the time increment, F is the external forces vector, while , ,i i ix x x   stand for nodal 
displacements, velocities and accelerations, respectively. The coefficients βHHT and 
γHHT in Eqn (14) are directly associated with numerical damping inherent in the HHT 
method. These parameters are related to the parameter α directly representing 
damping coefficient in the method, which can be taken from the interval [-0.3,0.0]. 
Lower bound of the parameter HHT  corresponds to a greater numerical damping, 
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which may prevent accuracy loss even with interferences of vibrations at higher 
frequencies. Their interrelations are introduced by the following formulas:   

 
 2
1

4
HHT

HHT





 , 1 2

2
HHT

HHT





  (15) 

 
3  Numerical simulation 
 
 

Numerical model have been created in the Autodesk Robot Structural Analysis 
(ARSA) software. Numerical model consists of 903 finite elements, where 9 of them 
refer to the mast guys and they utilize the small-sag formulation of equilibrium state 
of the cable implemented in the numerical system ARSA. The rest of finite elements 
have been formulated as classical 2-node bar elements in 3D space and they create the 
mast shaft geometry. This numerical representation of the mast structure features 
height of 198.0 meters. Mast shaft members have been designed with S235J2 steel 
grade whereas mast guys have been modelled as single-strand steel rope 1x37 with a 
diameter of 32,0 mm  that exhibits elastic moduli of 150 GPa and 1960 MPa of mean 
strength. Mast guys have been inclined by 45 degrees from the vertical orientation of 
mast shaft. Initial tension of this mast guys have been implemented through the pre-
shortening of 11.0 cm, 22.0 cm and 31.0 cm for each attachment level, i.e. 60.0, 120.0 
and 180.0 meters. A geometry overview of the entire structure and of the mast shaft 
have been shown in Figure 1a and Figure 1b, whereas cross-sectional members 
assignment has been shown in Table 1. 
 
 

a) b)  
Figure 1. Steel mast overall geometry (left – figure 1a) and geometry of mast shaft (right – 
figure 1b). 
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This structure has been subjected to the dynamic wind excitation in 10-minutes time 
interval shown in Figure 2. Structural responses in form of internal forces and nodal 
displacements have been recovered each 1.0 second of dynamic analysis. Initially 
performed deterministic approach to the design of the structure have been repeated 
for 11 different realizations of each uncertain design parameter under consideration 
so that the probabilistic approach could have been applied subsequently. This 
randomized parameters have been chosen of environmental and mechanical nature 
such as elastic moduli of mast shaft, elastic moduli of mast guys, thermal load and 
wind velocity as well.  
 
Segment 
no. 

Segment 
height 

Legs section Legs 
material

Bracing section Bracing 
material 

1 to 11 6.00 m CHS 168.3x20 S235J2 CHS 63.5x8 S235J2 
12 to 22 6.00 m CHS 168.3x16 S235J2 CHS 63.5x6.3 S235J2 
23 to 31 6.00 m CHS 168.3x12 S235J2 CHS 63.5x5.6 S235J2 
32 to 33 6.00 m CHS 168.3x8 S235J2 CHS 63.5x3.2 S235J2 

 
Table 1: Cross sections of structural members.  

 

 
Figure 2. Dynamic wind spectrum applied to the structure. 

 
Figure 3. A comparison of the FORM and relative entropy-based reliability indices 
for the ULS while randomizing wind velocity.
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Time fluctuations of both reliability indices have been been collected in Figs. 3-10, 
where the first four graphs correspond to the ULS analysis (cf. Figs. 3-6), and the 
remaining four (Figs. 7-10) – to the SLS verification. One compares in turn here an 
influence of uncertain wind velocity (Figs. 3 & 7), statistical scattering in guys elastic 
moduli (Figs. 4 & 8), random dispersion of the shaft members elastic moduli (Figs. 5 
and 9) with an uncertainty in thermal conditions (Figs. 6 and 10, correspondingly). A 
very general observation is that both SLS and ULS time fluctuations have different 
extremes appearing in totally different time moments, even in case of the same input 
random parameters.  

  
Figure 4. A comparison of the FORM and relative entropy-based reliability indices 
for the ULS while randomizing mast guys elastic moduli.

 

 
Figure 5. A comparison of the FORM and relative entropy-based reliability indices 
for the ULS while randomizing shaft members elastic moduli.
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Figure 6. A comparison of the FORM and relative entropy-based reliability indices 
for the ULS while randomizing thermal load.

 

 
Figure 7. A comparison of the FORM and relative entropy-based reliability indices 
for the SLS while randomizing wind velocity.

 

 
Figure 8. A comparison of the FORM and relative entropy-based reliability indices 
for the SLS while randomizing mast guys elastic moduli.
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Figure 9. A comparison of the FORM and relative entropy-based reliability indices 
for the SLS while randomizing shaft members elastic moduli.

 

 
Figure 10. A comparison of the FORM and relative entropy-based reliability indices 
for the SLS while randomizing thermal load.

 
All the results contained in Figs. 3-4 show clearly that wind velocity uncertainty is the 
largest danger for the given mast safety – the reliability indices obtained with both 
FORM and relative entropy approaches reach minimum value within the given time 
interval. This remains true for the Ultimate Limit State (ULS), whereas the SLS 
indices reach minimum value while randomizing cable elastic modulus. Moreover, it 
is demonstrated that the two probabilistic methods return almost the same results for 
all uncertainty sources, which means that Bhattacharyya entropy apparatus can have 
general applicability in reliability assessment.  
 
 

4  Concluding remarks  
 

Reliability assessment of cables structures has been proposed in this work and 
discussed on the example of some steel mast using traditional First Order Reliability 
Method and some non-standard approach following one of the relatives entropy 
concepts. A coincidence of the FORM and relative entropy based reliability indices is 
the very promising result, especially in the context of application of higher order 
iterative stochastic perturbation technique, which minimizes simulation time as well 
as overall computer effort. Numerical methodology presented here may be employed 
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in structural health monitoring of cable structures [11], whose precision and efficiency 
may be increased by additional non-destructive experiments.  
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