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Abstract

Thermosetting polymers have many uses in numerous industries, including the build-
ing, automotive, aerospace, and marine sectors. They are frequently employed as ad-
hesives or matrices in fibre-reinforced or particle-filled composites. Adhesives, repair,
and rehabilitation of civil constructions are among the primary uses of particle-filled
thermosets and thermoset-matrix composites in building and construction. Such appli-
cations necessitate novel strategies and dependable computational models that enable
precise yet computationally effective structural or structural element prediction. This
research will introduce a Lattice Discrete Particle Model (LDPM-P) that can simulate
the failure behaviour of particle-filled polymers utilized in civil engineering. When
considering the particles’ size and distribution, LDPM-P may simulate the desired
polymer composites at the particle scale. The phenomenological method serves as the
foundation for constitutive relations. The suggested method aims to provide a trust-
worthy design for a large group of structural components, including rebar connections
and adhesive anchors. The MARS software is used to incorporate the proposed model.

Keywords: polymers, lattice discrete particle model, volumetric-deviatoric split, vis-
coelasticity, tension, compression
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1 Introduction

The architectural, automotive, aerospace, and marine sectors, among many others, all
use thermosetting polymers extensively as adhesives or matrices in fibre-reinforced
or particulate-filled composites. In civil engineering, thermosets and related fibre-
reinforced composites have gradually replaced conventional building materials. Ad-
hesives, repair, and rehabilitation of civil constructions are among the primary uses of
particle-filled thermosets and thermoset-matrix composites in building and construc-
tion. Nowadays, particulate polymer behaviour is typically captured and predicted
using continuum-based finite element computational models [1, 2, 3]. Scholars like
Lieou [4] and Kothari [5] also suggested lower-scale models. However, the Lattice
Discrete Particle Model (LDPM), typically used for concrete and similar quasi-brittle
materials, is a promising choice to maintain a reasonable computational time and still
consider the material’s underlying structure. In order to meet the requirements of
polymer-based composites, the paper modifies the standard LDPM [6, 7]. Further-
more, updating the current LDPM formulations for the Poisson ratio to be higher than
the limiting value of 0.25 is necessary. Conventional polymers can encounter a value
of between 0.3 and 0.4, depending on the type of material.

2 Lattice discrete particle model

The lattice discrete particle model is frequently used to simulate the behaviour of con-
crete [6] or rocks [8]. It is based on the idea that the material is a collection of rigid
bodies (cells) interacting over the facets defined between them. These facets can be
considered potential crack surfaces and are assumed to be located between the adja-
cent cells. First, spherical particles are introduced into the examined volume. The lat-
tice system that depicts the mesostructure topology is defined by means of a Delaunay
tetrahedralization of the particle centres and nodes used to characterize the external
surface of the volume. The system of polyhedral cells is then created based on the 3D
tessellation. Note that different options are utilized for the tessellation, e.g., described
in [6] or [9]. The aggregate and surrounding matrix phase found between the particles
create cells. In contrast to the original LDPM formulation, just the distribution of filler
sizes needs to be prescribed.

The rigid body kinetics is utilized to describe the deformations associated with the
facets [6]

u (x) = ui + θi × (x− xi) , (1)

where ui and θi are the translational and rotational degrees of freedom of node i. For
the given displacements and rotations of the associated particles, the relative displace-
ment at the centroid of facet k can be determined as

uCk = uCj − uCi, (2)

where uCi and uCj are the displacements at the facet centroid caused by the transla-
tions and rotations of the adjacent nodes i and j, respectively. Displacement vector
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uCk is then employed to define the strain measures and discrete compatibility equa-
tions as follows:

εNk =
nk

TuCk

lij
, εMk =

mk
TuCk

lij
, εLk =

lk
TuCk

lij
, (3)

where n = (xj − xi)/lij , m and l are two mutually orthogonal vectors in the plane
of the projected facet and lij = ∥xj − xi∥ = [(xj − xi)

T(xj − xi)]
1/2. xi and xj

stand for the positions of node i and j, respectively. Because of the restriction on
Poisson’s ratio (−1 < ν < 0.25) caused by the aforementioned split into normal and
shear components, the volumetric-deviatoric split introduced in the microplane mod-
els [10, 11] is considered. The volumetric-deviatoric split allows to recover the full
Poisson ratio range (−1 < ν < 0.5) needed for polymers. Because of the underlying
tetrahedral mesh and corresponding facets Ωe (see [6]) the volumetric (hydrostatic)
strain is calculated as [12]

εV k =
1

3Ωe,0

∑
k∈Fe

ΓklijεNk, (4)

where Ωe,0 is the initial volume of the tetrahedral element, Fe is the set of facets
belonging to one element and Γ and lij are the facet area and distance of the adjacent
nodes corresponding to the facet, respectively. Note that this definition is different than
in the original paper by [6] where the volumetric strain read εV k = (Ωe − Ωe,0) /3Ωe,0.
Ωe is the current tetrahedron volumes belonging to the facet k. The normal deviatoric
strain takes the form

εNDk = εNk − εV k. (5)

Moreover, the shear (tangential) strain in the plane of the facet is written as εTk =
(ε2Mk + ε2Lk)

1/2 and deviatoric strain as εDk = (ε2NDk + ε2Tk)
1/2. The constitutive

material law defined on the facets is described in the following section. By imposing
the equilibrium through the principle of virtual work, the internal work and nodal
forces associated with the facet can be calculated [6].

2.1 Formulation of generalized Leonov model (viscoelastic
behaviour)

The stepping stone in the formulation of the Leonov model is the Eyring flow equation
representing the plastic component of the shear strain rate in the form

dγp

dt
=

1

2A
sinh(τ/τ0) (6)

Note that subscript k is omitted in the following text for readability. The total shear
strain rate combining the elastic and plastic strain rates then becomes

dγ

dt
=

dγe

dt
+

dγp

dt
=

dγe

dt
+

τ

η( dγp/ dt)
(7)
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which is the one-dimensional Leonov constitutive [13] model with the shear-dependent
viscosity η given by

η( dγp/ dt) =
η0τ

τ0sinh(τ/τ0)
= η0aσ(τ) (8)

where τ is the shear stress and A, τ0 are the model parameters, η0 is the viscosity cor-
responding to a linear viscoelastic response and aσ is the stress dependent shift factor.
Based on the approach defined in [14], the parameter τ0 = kT

V
, where the temperature

is denoted as T , k is the Boltzmann constant and V stands for the activation vol-
ume. Notice that Eq. (7) represents a single Maxwell unit with variable viscosity. To
describe the material response sufficiently accurately, the generalized Maxwell chain
model is typically used.

The extension of Leonov model to multidimensional behaviour introduces equiva-
lent deviatoric stress and the interested reader is refered to [15]. Admitting the vecto-
rial based formulation for the facets, material isotropy, small strain theory, and the bulk
response to be linearly elastic we arrive at the complete set of constitutive equations
defining the compressible generalized Leonov model in the form

σV = E0
V εV (9)

dσD

dt
=

M∑
µ=1

ED,µ

(
dεD
dt

− dεpD, µ

dt

)
, σD =

M∑
µ=1

σD,µ (10)

σD,µ = ηµ
dεpD,µ

dt
= η0,µaσ(σD)

dεpD,µ

dt
(11)

where σV and σD are volumetric and deviatoric stresses, respectively. E0
V = E/(1 −

2ν) is the material bulk modulus and ED,µ stands for the deviatoric modulus, asso-
ciated with the µ-th unit. Note that for elastic material E0

D = E/(1 + ν), where E
represents Young’s modulus and ν is Poisson’s ratio. The stress shift factor reads

aσ(σD) =
σD

σD0sinh(σD/σD0)
, (12)

where σD0 is the characteristic deviatoric stress (the model parameter). Note that
the dependance of the viscosity on evolution, e.g., temperature, humidity, etc., can be
taken into account by multiplication of initial characteristic viscosity η0,µ by additional
shift factors in Eq. (11). To integrate Eq. (10) in time we settle for the most simple,
fully explicit forward Euler integration. Provided that the total strain rate is constant
during integration, a new state of stress at the end of the current time step ∆t assumes
the form

σV (ti) = σV (ti−1) + E0
V∆εV (13)

σD(ti) = σD(ti−1) + ÊD(ti−1)∆εD +∆λ(ti−1) (14)

where ti is the current time at the end of the i-th time increment. In light of the
assumed Dirichlet series expansion to represent the shear relaxation function, the in-
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stantaneous deviatoric modulus ÊD and the increment of eigenstress ∆λ reads

ÊD =
M∑
µ=1

ED,µ
θµaσ(ti−1)

∆t

[
1− exp

(
− ∆t

θµaσ(ti−1)

)]
(15)

∆λD = −
M∑
µ=1

[
1− exp

(
− ∆t

θµaσ(ti−1)

)]
σD,µ(ti−1), (16)

where θµ is the relaxation time of the µth unit. Thus the increment of eigenstrain reads

∆ε̂D =
∆λD

ÊD

(17)

2.2 Inelastic behaviour

The nonlinear and inelastic behaviour is characterised by the lower-scale mechanisms:
(a) fracture; (b) pore collapse and material compaction; (c) frictional behaviour.

2.2.1 Fracture

It is known that the opening and sliding modes on the facets are inherently coupled
together in fracture. Therefore, when the fracture on the facets is studied, it is bene-
ficiary to define the fracture and damage evolution in terms of effective (equivalent)
strain εeq and stress σeq, similar definitions can be found in [6, 16, 17] . However,
because of the volumetric-deviatoric split, the equivalent normal strain is defined to
characterise the material’s fracture. The equivalent strain εeq takes the form

εeq =

√
(εV + αεND)

2 + α (ε2M + ε2L) =

√
(εeqN )

2
+ αε2T , (18)

where εeqN = εV + αεND, α stands for the interaction coefficient. This definition
of equivalent normal strain originates from the assumption that σN = E0

V ε
eq
N . The

coupling strain ω is then defined as

tanω =
εeqN√
αεT

. (19)

Based on the principle of virtual power, we relate the stress components to the equiv-
alent stress as

σN = σeq ε
eq
N

εeq
, σM = σeqαεM

εeq
, σL = σeqαεL

εeq
(20)

and
σV = σeq εV

εeq
, σND = σeqαεND

εeq
. (21)
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By substituting Eqs. (20) and (21) into Eq. (18) we obtain the effective stress in terms
of normal and shear stress

σeq =

√
σ2
N +

σ2
T

α
. (22)

Note that based on the derivations in [17], the coupling strain ω can be also expressed
as

tanω =

√
ασN

σT

, (23)

which can be utilised for the formulation of frictional behaviour. If the elastic be-
haviour is assumed and taking into account Eqs. (20), the stresses are written as

σV = EeqεV , σND = αEeqεND, σM = αEeqεM , σL = αEeqεL, (24)

where Eeq = E0
V and thus the physical meaning of α = E0

D/E
0
V = 1− 2ν/1 + ν

which also allows covering the whole physical range of the Poisson ratio, see [6] for
the difference. Note that tensile behaviour is assumed if σN > 0, which can also be
written as εV + αεND > 0.

The strain-dependent boundary σbt(ε
eq, ω) is defined in [6, 17] int the form of

equivalent strain. However, the improved formulation is utilized in this paper and
takes the form

σbt (w
eq, ω) = σt0 (ω) exp

[
−weq

max (ω)

wf (ω)

]
, (25)

where wf (ω) is the parameter controlling the material’s ductility. The utilised cou-
pling strain is calculated based on the maximum reached values of equivalent normal
and shear strains as

tanω = εeqN,max/
√
αεT,max. (26)

The coupling strain is written as

wf (ω) = wft + (wfs − wft)

(
π/2− ω

π/2 + ω

)nt

, (27)

where wft = Gft/ft and wfs = Gfs/fs are the parameters controlling the ductility
of the material and are calculated as the ratio of the fracture energy (Gft - tension,
Gfs - shear) and the tensile (ft) or shear (fs) strength. nt is the material coefficient
controling the transition from the brittle behaviour to perfectly plastic material. The
equivalent maximum crack opening ever reached is defined as

weq
max =

√
(wV + wND)

2
max + w2

T,max =

√(
weq

N,max

)2
+ w2

T,max, (28)

where the increments of the crack opening for a given time step can be expressed as

ẇV (ω) = (ε̇V,cr) l =
(
ε̇V − σ̇V /E

0
V

)
l,

ẇND (ω) = (ε̇ND,cr) l =
(
ε̇ND − σ̇ND/E

0
D − ε̇ND,creep

)
l,

ẇM (ω) = (ε̇M,cr) l =
(
ε̇M − σ̇M/E0

D − ε̇M,creep

)
l,

ẇL (ω) = (ε̇L,cr) l =
(
ε̇L − σ̇L/E

0
D − ε̇L,creep

)
l, (29)
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where ε·,cr and ε̇·,creep stand for cracking and creep strains, respectively. l is the lattice
edge length. The strength limit σt (ω) in Eq. (25) is defined as

σt0 (ω) = ft

√
αftξ2c+ ξ3s+

√
2ξ21

[
(ξ2s+

√
αftc)

2
+ αf 2

t c
2 − ξ3s2

]
(ξ2s+

√
αftc)

2 , (30)

where c = cosω, s = sinω and ξ1 = µ0ft− fs, ξ2 = 2µ0ft− fs and ξ3 = 2µ2
0f

2
t − f 2

s .
The denominator in Eq. (30) is equal to zero if

tanω =
sinω

cosω
= −

√
αft
ξ2

=

√
ασN

σT

, (31)

therefore

σt0 = ft

[
1−

(
ξ2
2ξ1

)2
]√

1 +

(
ξ2√
αft

)2

, (32)

which is valid for the tensile behavior (0 ≤ ω ≤ π/2). Therefore ξ2 ≤ 0 which leads
to the conditions fs ≥ 2µ0ft and also ξ1 ≤ −µ0ft. Note that if µ0 = fs/2ft, Eq. (30)
reduced to the strength limit for effective stress presented in [17]

σt0 (ω) = ft
− sin (ω) +

√
sin2 (ω) + 4α cos2 (ω) /r2st

2α cos2 (ω) /r2st
, (33)

where rst = fs/ft. However, in the current formulation, the friction coefficient µ0 is
ensured for pure shear (ω = 0). In this case smooth transition between the compres-
sion and tension is thus ensured.

2.2.2 Pore collapse and material compaction

Pore collapse in compression follows the similar idea proposed in [6, 18]. However, it
is simplified and the equivalent normal stress is related to the equivalent normal strain.
The boundary in compaction then takes the form

σbc = −fNc0 +Hc0 (εNcf − εNc0) ln

(
1 +

εeqN + εNc0

εNcf − εNc0

)
= −fNc0 +Hc0 (εNcf − εNc0) ln

(
εNcf + εeqN
εNcf − εNc0

)
, for εeqN < 0 (34)

where stress fNc0 denotes the material parameter limiting elastic part, εNc0 = fNc0/E
0
V

is thus the compaction strain and Hc0 stands for the initial hardening modulus at the
onset of pore collapse. εNcf is the limit (asymptotic) strain. Note that parameters
fNc0, εNc0, εNcf , Hc0 are assumed to be positive. The loading/unloading modulus is
determined as EV = max (E0

V ; dσbc/ dε
eq
N ), where dσbc/ dε

eq
N = Hc

εNcf−εNc0

εNcf+εeqN
.
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2.2.3 Frictional behaviour

The shear strength increases due to the frictional effects in the presence of compressive
forces (σN < 0). The frictional boundary is then defined similarly to Eq. (25) as

σbs (ws, ω, σN) = σs0 (σN) exp

[
− weq

max

wf (ω)

]
, (35)

where wf (ω) is defined in Eq. (27) and weq
max is defined in Eq. (28). The strength limit

is rewritten in a similar form as in [6]

σs0 (σN) = fs + µ0fNc0

[
1− exp

(
σN

fNc0

)]
(36)

The simple friction slip boundary can be also assumed in the form

σs0 (σN) = fs − σNµ0. (37)

3 Concluding remarks

The objective was to give an overview of the recently developed lattice discrete parti-
cle model for polymers. The current formulation combines viscoelasticity to capture
the time-dependent behaviour, fracture and plasticity. Moreover, utilising LDPM al-
lows the simple formulation of material law in the vectorial form on each facet. The
presented formulation is implemented in MARS1 software and will be tested against
the experimental data obtained for different loading scenarios, e.g., tension, compres-
sion, and biaxial loading.
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