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Abstract

In this paper, we focus on the mortar method with a segment-to-segment approach
used for connecting non-conforming and non-overlapping meshes and for the contact
between two elastic bodies. We briefly review the theory, present our Matlab im-
plementation and compare results on benchmarks. We compare our results with the
analytical solution of Hertz stress and popular commercial software Ansys.
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1 Introduction

In civil engineering and especially in the structural analysis, the design of joints be-
tween two load-bearing members, e.g., a column and girder, is one of the most crucial
ingredients of the structure design. In the case of steel structures, the most com-
monly used joins are welded, where the loads between two members are transferred
through weld and bolt connections. Here, the shear and the thrust are carried by the
bolts while the compression is transferred through the contact pressure, usualy be-
tween two steel plates. Design of such joints are well described in european standards
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called Eurocodes [1], which provide general design instruction and methods to cal-
culate load bearing capacity as well as rotation stiffness of the joints. Although the
methods described in Eurocodes are suitable for many variations of joins, they are
also in general time consuming. With the introduction of softwares using finite el-
ement method (FEM) [3] there has been a shift from Eurocodes to more universal
models using shell elements and beams elements. In many engineering applications,
one of the commonly used methods for simulation of contact pressure between two
bodies is the introduction of artificial rigid non-linear thrust beams with additional in-
equality boundary conditions to allow only compression forces. This approach yields
satisfactory results in situations, where two bodies are initially in very close proximity
and the influence of friction is negligible. A different approach is to use the so-called
mortar method [11] which creates a way of connecting non-conforming meshes and
allows contacts between two elastic bodies. In this paper, we present the basic idea
of mortar methods for linear elasticity contact problems in 2D, our implementation in
Matlab [12] using fully vectorized Matlab implementation of elastic problems [4] and
a solution of selected benchmarks compared with widely-used popular commercial
software Ansys [2].

The paper is organized as follows; we start with a short review of the mathemat-
ical background; see Section 2 for the derivation of the algebraic formulation of the
corresponding optimization problem and Section 3 for the introduction of the Mortar
method. Section 4 presents considered benchmarks and our numerical results. The
final Section 5 concludes the paper and presents our future work.

2 Algebraic formulation of the contact problem for elas-
tic bodies

We consider two bodies denoted as Ω1, Ω2 ⊂ R2 with the possible contact defined by
the frictionless contact boundary condition. We assume that the bodies are fixed on the
parts of the boundaries Γ1

U , Γ
2
U ̸= ∅ . The load is represented by surface (prescribed

on the boundaries parts Γ1
N , Γ

2
N ) and volume forces.

For the numerical solution of the proposed problem, we adopt the commonly used
finite element method (FEM), see, e.g., [7], [6]. The FE partition will be denoted
as Th = T 1

h ∪ T 2
h and consists of elementary elements. In particular, displacement

fields are approximated by continuous, piece-wise linear functions and strain (stress)
fields are approximated by piece-wise constant functions. The final discretized prob-
lem can be classified as an optimization problem with simple equality and inequality
constraints.

The algebraic formulation of the problem is related to the contact of two bodies.
This means that an unknown displacement vector v ∈ Rn consists of two parts, i.e., it
has the following structure:

v =
(
vT
1 , v

T
2

)T
,
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where vi denotes the displacement vector on Ωi, i = 1, 2. We define the space

V = {v ∈ Rn | BEv = o} , (1)

and the set of feasible displacements

K = {v ∈ Rn | BEv = cE, BIv ≤ cI} . (2)

Here the equality constraint matrix BE ∈ RmE×n represents the Dirichlet boundary
conditions defined on Γ1

U , Γ
2
U . The inequality constraint matrix BI ∈ RmI×n repre-

sents the non-penetration condition on the contact zones Γ1
N , Γ2

N . Notice that K is
convex and closed.

Let K ∈ Rn×n be a block diagonal matrix consisting of the elastic stiffness matrices
Ki defined on each domain Ωi, i = 1, 2. Due to the presence of the Dirichlet boundary
conditions on both domains and the Korn inequality, we can define the energy norm
on V:

∥v∥e :=
√
vTKv =

√√√√ 2∑
i=1

vT
i K

ivi, v =
(
vT
1 , v

T
2

)T ∈ V .

Notice that using this norm is suitable both from mechanical and mathematical points
of view.

The algebraic formulation of the contact elastic problem can be written as the fol-
lowing optimization problem

Find u ∈ K : J(u) ≤ J(v), ∀v ∈ K, (3)

where

J(v) =
2∑

i=1

1

2
vT
i K

ivi − fTi vi. (4)

Here v and f denote the discretized domain displacements and the discretized domain
vector of prescribed forces.

3 Mortar method

To describe contact between Γ1
N , Γ

2
N , we divide contact zones into master-slave sur-

faces γ
(1)
c ,γ(2)

c in such a way, that for every master surface γ
(1)
c on Γ1

N there exists
slave surface γ

(2)
c on Γ2

N . Between each master-slave contact surfaces, we can define
discretized contact energy Πc caused by traction forces t ∈ RmI on gap g ∈ RmI

between those surfaces
Πc(v, t) = tTg (5)

with Karush–Kuhn–Tucker (KKT) conditions for friction-less contact

gj ≥ 0, (6)
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tj ≤ 0, (7)

tjgj = 0. (8)

Inequalities (6) ensure non-penetrating of bodies, inequalities (7) enforce the pressure
exclusively on the interface, and complementarity equations (8) secure pressure to
occur if and only if two bodies are in contact with zero gaps as well as prevent contact
pressure to act in the case of a non-zero gap. Rewriting gap constrain (6) to the matrix
representation, we obtain mortar inequality constrain

BIv ≤ cI (9)

with mortar constrain matrix BI and mortar constrain vector cI given by

BI = NT (D−M), (10)

cI = −NT (D−M)x, (11)

where x ∈ Rn is node coordinate vector and N ∈ R2mI×mI is a block-diagonal matrix
with diagonal blocks of the normal vector from each slave node nsl on slave surface
γ
(1)
c ,

N =

n1

. . .
nsl

.
Matrices M,D ∈ R2mI×n are composed from rows representing dependencies of the
movement between master and slave nodes with components given by

Dj,j = Dj,jI2 =

∫
γ
(1)
c

N
(1)
j dγI2, (12)

Mj,l = Mj,lI2 =

∫
γ
(1)
c

ΦjN
(1)
l dγI2. (13)

Here, Nj and Nl denote basis functions of the slave and master mortar elements, re-
spectively, Φj denotes dual basis functions of slave mortar element and I2 a 2 × 2

identity matrix. Both integrals are evaluated over the slave surface γ
(1)
c . The dimen-

sion of mortar elements is always one lower than the dimension of the elements (in our
example we have 2D elements and 1D mortar elements) with the same basis functions
as the normal elements. In our benchmarks, we consider linear elements with given
explicit dual basis functions

Φ1 = 1/3(1− 3ζ), Φ2 = 1/2(1 + 3ζ).

For higher order basis function, please refer to [11].
Additionally, we have to mention some technical details about mortar constraints.

Each integration in (12),(13) is further multiplied by identity matrix I2 since there
are two degrees of freedom (DOF) for each node. Further, normal vectors and node
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positions are based on the deformation of bodies, thus the inequality (9) is non-linear
in v, see next subsection and (14). The last equation D−M describes the mutual
movement of slave-master nodes respectively, which causes the sum of each row of
D−M to be zero. In special case, when all nodes from γ

(1)
c lie on γ

(2)
c , the equation

(11) would evaluate zero vector. In such case changing inequality in (9) to equality
ensures the glue boundary condition of two non-conforming meshes.

Since Nj , Nl, and Φj are well defined, the only missing methodology component
is the evaluation of the slave surface γ

(1)
c . This process is described in the following

subsection.

3.1 Segmentation

To calculate the slave surface area γ
(1)
c , we use the segmentation algorithm. For sim-

plicity, let us introduce a case with one slave and two master segments as demonstrated
in Figure 1.

Figure 1: Master-slave elements in the mortar method.

During the preparation phase, we compose the incidence matrix [8] C describing
connectivity between mortar elements and nodes. Afterwards, we evaluate normal
vectors for each node as an average over each connecting mortar element. Using the
normal vector and the elements for each slave element, we create a polygon. This
structure is used to determine if the nodes from the master elements are present, see
Figure 2. For each identified node, we determine its connected mortar elements using
the incidence matrix and we define master-slave pairs for further evaluation.

One of the methods for the calculation of bounds of slave surface is based on the
nodes projection onto the surface of mortar element. In our implementation, we cal-
culate each node p using linear interpolation of element nodes coordinates xi,1,xi,2

in combination with linear interpolation of normal vectors from each element node
ni,1,ni,2, i.e.,

p = xi,1 + α(xi,2 − xi,1) + β (ni + α(ni,2 − ni,1)) . (14)
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Since the equation (14) is not linear, we adopt Newton method [9] to calculate the
coefficient α ∈ [0, 1], which is used to define boundary of slave surface γ

(1)
c and

xi,1 + α(xi,2 − xi,1)

defines point on mortar element, see Figure 3. Notice that in the case when α is not in
the feasible set defined by interval [0, 1], the respective node cannot be projected onto
the element. This property can be further exploited to decrease the number of Newton
method iterations.

Figure 2: Segments normal vectors (left) and search for nodes in polygon (right).

Figure 3: Master-slave projection onto two separated master-slave pairs.

Based on the convergence of the Newton method for both master and slave seg-
ments, it is possible to determine the mutual position of the two elements as well
as their contact surface. Using this process for master-slave pairs gives the required
integration boundary for (12),(13) defined as intervals αs = [αs1, αs2] and αm =
[αm1, αm2] for slave and master element, respectively.

4 Numerical benchmarks

As a benchmark, we consider a contact between two bodies Ω1, Ω2 of homogeneous
elastic material with zero displacement on boundary Γ2

U and imposed displacement uz

on Γ1
U , see Figure 4. Material of Ω1 is defined by Young’s modulus E = 200 GPa and

Poisson’s ratio ν = 0.3. For our benchmark, the material of Ω2 was chosen to behave
as rigid with Young’s modulus E = 160 TPa and Poisson’s ratio ν = 0.3. Body Ω1 is
a semicircle with radius of r = 8 mm and body Ω2 is a rectangular with cross-section
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of 30/10 mm. These blocks have prescribed contact zones Γ1
m, Γ2

s which also describe
master and slave side of contact region respectively. Displacement is applied on face
of the block Ω1, spread equally across whole edge. Block Ω1 is discretized by 2621
finite element, block Ω2 is discretized by 7500 finite element, see Figure 5.

Figure 4: Geometry of benchmark.

Figure 5: Mesh of benchmark with 2621 elements in semicircle and 7500 elements in
rectangle.

Benchmark presented in this section has an analytical solution for contact pressure
known as Hertz stress [10] with maximum normal contact pressure

pc =
4rp

πb
, b = 2

√
2r2p(1− v2)

Eπ
.

Here pc is a contact pressure, r is the radius of the semicircle, p is a uniform load
on the top of the semicircle and b is the width of the contact surface after deformation,
see Figure 6. Comparison of contact stresses related to Hertz stress is shown in Table
1. Even though there is not an exact match between Hertz stress and results computed
by our implementation, it is still considered to be a valid solution for engineering
applications. Since the Ansys solution has a sufficient match with the Hertz solution,
we further compare element stresses with the solution from Ansys, see Figure 7 and
Table 2.
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Figure 6: Undeformed (left) and deformed (right) mesh in contact region

Approach
pc

[Mpa]
Abs. Diff

[Mpa]

Rel. Diff
[%]
[2pt]

Hertz 14003 - -
Ansys 13637 367 2.62
Our 13159 845 6.03

Table 1: Comparison of maximal normal contact pressure between Hertz stress, Ansys
solution and our solution.

Figure 7: Comparison between our stress (left) and stress computed in Ansys (right).
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Stress
Matlab
[Mpa]

Ansys
[Mpa]

Abs. Diff
[Mpa]

Rel. Diff
[%]
[2pt]

σy,max 190 187 3 1.58
σy,min -13159 -13420 261 1.94
σx,max 700 664 36 5.42
σx,min -11305 -10221 1084 10.61
τxy,max 3270 3437 167 4.86

Table 2: Comparison of maximal and minimal stresses between our solution and An-
sys for Hertz problem.

We implement segment-to-segment mortar method for contact between two elastic
bodies without friction in Matlab and compare our solution against the analytical Hertz
stress as well as results from commercial software Ansys. Comparing different results
for normal contact stresses in Table 1, we are able to achieve relative difference 6%
from the Hertz stress. Further in Table 2, we compared element stresses with relative
difference of 1.94% for element stress σy,min at the contact area.

5 Conclusion and future work

In the paper, we present the results of our implementation of the mortar method for
solving the elasticity contact problem between two bodies discretized by FEM. Based
on the comparison with commercial software, the results confirm our approach to be
valid.

In our future work, we expand the presented approach to contact problems with
elastoplastic behaviour. This challenging task requires efficient numerical solvers,
therefore we adopt optimal quadratic programming solvers [6], such as the Semi-
monotonic Augmented Lagrangian method (SMALSE-M) and Modified Proportion-
ing with Reduced Gradient projections (MPRGP). To improve the performance even
further and extend the possibility of solving large-scale problems on parallel archi-
tectures, we apply total finite element tearing and interconnecting (TFETI) [5], which
is a robust non-overlapping domain decomposition method. This approach grants a
possibility to consider 3D contact problems where a large number of FE nodes can
easily exceed the number of unknowns in corresponding optimization problems to
millions. Additionally, we have to implement the extension of the mortar method to
3D problems to solve the contact problems with non-conforming meshes.
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