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Abstract

This paper presents some notes on the vectorization and parallelization code for the
elasticity problem in Matlab. Leaving aside the solution to the elasticity problem,
the most time-consuming operation is the construction of the stiffness matrix. To
solve this problem comprehensively, we should combine two approaches. The first
approach is to decompose the body using a non-overlapping domain decomposition
method (TFETI), which is well parallelizable, and to construct the corresponding ob-
jects for each subdomain. The second approach is vectorization to construct a stiffness
matrix for each subdomain efficiently. This approach implements in Matlab, and all
Matlab codes will be available for download and provide complete finite element im-
plementations in both 2D and 3D.

Keywords: finite element method, vectorization approach, non-overlapping domain
decomposition method, parallelization, elasticity problem, Lagrange multipliers

1 Introduction

Elastic problems still represent an essential topic in the continuum mechanics of steel
and solids. This paper is focused on the Matlab implementation of elastic problems
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formulated in terms of displacements.
This approach is based on two previously published papers [1,2] that addressed the

problem of elastoplasticity in combination with TFETI domain decomposition and a
second paper where we discussed an efficient approach to vectorization, which is a
powerful tool in speeding up code in Matlab and other programming languages.

A linear solver considered in this paper is based on a FETI-type domain decom-
position method enabling its efficient parallel implementation. The standard FETI
method (FETI-1) was initially introduced by Farhat and Roux [3] and theoretically
analyzed by Mandel and Tezaur [4]. Using this approach, a body is partitioned into
non-overlapping subdomains, an elliptic problem with Neumann boundary conditions
is defined for each subdomain, and inter-subdomain field continuity is enforced via
Lagrange multipliers. The Lagrange multipliers are efficiently solved from a dual
problem by a variant of the conjugate gradient algorithm. The first practical imple-
mentations exploited only the favorable distribution of the spectrum of the matrix of
the minor problem [5], also known as the dual Schur complement matrix, but the such
algorithm was efficient only with a small number of subdomains. Here, we use the
Total-FETI (TFETI) [6] variant of the FETI domain decomposition method, where
even the Dirichlet boundary conditions are enforced by Lagrange multipliers.

The rest of the paper is organized as follows. Section 2 summarizes the neces-
sary theoretical basis of elastic problems in continuous form. Algebraic formulation
and effective assembling of the stiffness matrix are recapitulated in Section 3. The
non-overlapping domain decomposition method TFETI is mentioned in Section 4 and
finally, the numerical results are introduced in Section 5.

2 Elastic model

Let us consider a deformable body occupying a domain Ω ⊂ R3 with a Lipschitz
continuous boundary Γ = ∂Ω. We will describe the state of the body during a loading
process by the Cauchy stress tensor σ ∈ S, the displacement u ∈ R3 and the small
strain tensor ε ∈ S. Here S = R3×3

sym is the space of all symmetric second order tensors.
More details can be found in [7].

The small strain tensor is related to the displacement by the linear relation

ε(u) =
1

2

(
▽u+ (▽u)T

)
. (1)

The equilibrium equation reads

−div(σ(x)) = g(x) ∀x ∈ Ω, (2)

where g(x) ∈ R3 represents the volume force acting at the point x ∈ Ω.
Let the boundary Γ be fixed on a part ΓU that has a nonzero Lebesgue measure with

respect to Γ, i.e., we prescribe the homogeneous Dirichlet boundary condition on ΓU :

u(x) = 0 ∀x ∈ ΓU . (3)
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On the rest of the boundary ΓN = Γ \ ΓU , we prescribe the Neumann boundary
conditions

σ(x)n(x) = F (x) ∀x ∈ ΓN , (4)

where n(x) denotes the exterior unit normal and F (x) denotes a prescribed surface
forces at the point x ∈ ΓN . Similarly, we can consider other boundary conditions, for
example symmetry and periodic conditions.

For a weak formulation of the investigated problems, it is sufficient to introduce
the space of kinematically admissible displacements,

V =
{
v ∈ [H1(Ω)]3 : v = 0 on ΓU

}
. (5)

Then the conditions (2)–(4) can be written in a weak sense by∫
Ω

⟨σ, ε(v)⟩Fdx =

∫
Ω

gTvdx+

∫
ΓN

F Tvds ∀v ∈ V, ∀t ∈ Q. (6)

Here ε(v) is defined by (1), ⟨., .⟩F and ∥.∥F denote the Frobenius scalar product and
the corresponding norm on the space S, respectively.

We consider the elastic constitutive model given by the Hooke law for isotropic
material,

σ = Cε = λtr(ε)I + 2µε (7)

with the Lame coefficients λ, µ. For the sake of simplicity, we assume a homogeneous
material, i.e., the constant coefficients λ, µ > 0. The trace operator of a tensor is
denoted by tr(.) and I denotes the identity.

If we substitute (7) into (6), we obtain the weak formulation of the elastic problem.
Find u = u(x) ∈ V such that

ae(u, v) =

∫
Ω

gTvdx+

∫
ΓN

F Tvds ∀v ∈ V, (8)

where the bilinear form on V reads

ae(w, v) =

∫
Ω

⟨Cε(w), ε(v)⟩Fdx, w, v ∈ V (9)

and C it the fourth order tensor.

3 Algebraic formulation

For sake of simplicity, let us continue with algebraic formulation. The space of kine-
matically admissible displacements (5) rewrite into

V := {v ∈ Rn|BUv = o} ,
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where restriction matrix BU ∈ Rm×n represents the homogeneous Dirichlet boundary
condition. Than, we can rewrite the equation (8) as follows: find u ∈ V such that

vT (Ku− f) = 0 ∀v ∈ V , (10)

where u ∈ Rn denotes the unknown displacement vector, f ∈ Rn is the vector of ex-
ternal forces, and K ∈ Rn×n is corresponding elastic stiffness matrix. For assembling
matrix K, we adopt the key idea from [2]

K = STDS, (11)

where S is a sparse matrix representing the strain-displacement operator at all inte-
gration points and D is block diagonal sparse matrix for elastic problems. For more
details how to effectively assamble matrix see [2].

4 TFETI domain decomposition method

We will schematically write the problem in the form:

find u ∈ V : K̃ũ = f̃ , (12)

where K̃, ũ, f̃ are the restriction of K, u, f with respect to the Dirichlet boundary
conditions respectively. Let us note that K is a symmetric and positive semidefinite
matrix and K̃ is a symmetric and positive definite matrix. The problem (12) can be
equivalently rewritten as a minimization problem:

find u ∈ V : J(u) ≤ J(v), ∀v ∈ V , (13)

where
J(v) =

1

2
vTKv − fTv, v ∈ V .

To apply the TFETI domain decomposition, we tear the body from the part of
the boundary with the Dirichlet boundary condition, decompose it into subdomains,
assign each subdomain by a unique number, and introduce new “gluing” conditions on
the artificial intersubdomain boundaries and on the boundaries with imposed Dirichlet
condition. In particular, the polyhedral domain Ω is decomposed into a system of s
disjoint polyhedral subdomains Ωp ⊂ R3, p = 1, 2, . . . , s.

After the decomposition each boundary Γp of Ωp consists of three disjoint parts Γp
U ,

Γp
N , and Γp

G, Γp = Γ
p

U ∪ Γ
p

N ∪ Γ
p

G, where

Γp
U = ΓU ∩ Γp, Γp

N = ΓN ∩ Γp, Γp
G =

⋃
q∈{1,2,...,s}\{p}

Γpq
G ,

with Γpq
G being the part of Γp which is glued to Ωq, p ̸= q.
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After that, we can define a vector v ∈ Rn, v =
(
vT
1 ,v

T
2 , . . . ,v

T
s

)T , where vp ∈
Rnp , p ∈ {1, 2, . . . , s}, is the vector with dimension n =

∑s
p=1 np and np is num-

ber unknown for sumbomain p. Similarly we can find the vector f ∈ Rn, f =(
fT

1 ,f
T
2 , . . . ,f

T
s

)T
, f p ∈ Rnp , p ∈ {1, 2, . . . , s}, such that f p is the algebraic repre-

sentation of the load restricted on Ωp and Γp
N . Let the matrix BG ∈ RmG×n represent

the gluing conditions and BU ∈ RmU×n the Dirichlet boundary conditions. Both ma-
trices can be combined into one constraint matrix

B =

[
BG

BU

]
, B ∈ Rm×n, m = mG + mU . (14)

Typically m is much smaller than n. Let us note that B can be assembled to have
different forms: redundant, non-redundant or orthonormal. For more details see [8–
11]. In fact all forms are applicable but due to simplicity of our presentation we use
the orthonormal form of B.

Let the matrix K ∈ Rn×n, K = diag (K1,K2, . . . ,Ks) denotes a symmetric
positive semidefinite block diagonal matrix, where

Kp = ST
pDpSp, Kp ∈ Rnp×np ,

and Sp, Dp are similar matrices as in (11) but for sumdomain p, p ∈ {1, 2, . . . , s}.
The diagonal blocks Kp, p ∈ {1, 2, . . . , s}, which correspond to the subdomains Ωp,
are positive semidefinite sparse matrices with known kernels, the rigid body modes.

The algebraical formulation of is following:
find u ∈ V : J(u) ≤ J(v) ∀v ∈ V,

J(v) := 1
2
vTKv − fTv,

V := {v ∈ Rn : Bv = o} .
(15)

Even though (15) is a standard convex quadratic programming problem, its for-
mulation is not suitable for numerical solution. The reasons are that K is typically
ill-conditioned, singular, and very large.

The complications mentioned above may be essentially reduced by applying the du-
ality theory of convex programming (see, e.g., Dostál [12]), where all the constraints
are enforced by the Lagrange multipliers λ. The Lagrangian associated with problem
(15) is

L(v,λ) = J(v) + λTBv. (16)

It is well known [12] that (15) is equivalent to the saddle point problem:

find (u,λ) ∈ Rn ×Rm : L(u,ν) ≤ L(u,λ) ≤ L(v,λ) ∀(v,ν) ∈ Rn ×Rm (17)

in sense that u solves (15) if and only if (u,λ) solves (17). For more details see
[1, 12–14].
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Figure 1: Simplified 2D geometry of the elastic problem (left). The real 3D geometry
appears by extrusion in x3 direction. The corresponding domain decompo-
sition into 5 subdomains (right).

5 Results

The proposed algorithms were implemented in new library developed in Matlab and
parallelized using Matlab Distributed Computing Server and Matlab Parallel Toolbox.
The numbers of subdomains are chosen to keep the number of nodes per subdomain
approximately constant except for the coarsest mesh level. In our code we allow
multiple subdomains per processor which is discussed for example in [15].

All the calculations were done on a MacBook Pro with a 2.4 GHZ quad-core Intel
Core i5 and 16GB of memory. Parallel jobs from two to four processors were run in
Matlab software.

We consider a body that occupies the domain depicted in Figure 1 (left) in x1 – x2

plane. The corresponding 3D geometry appears by extrusion in x3 direction. The size
of the body in this direction is equal to one if the 3D problem is considered. On the
left and bottom sides of the depicted domain, the symmetry boundary conditions are
prescribed, i.e., u · n = 0 where n is a normal vector to the boundary. On the bottom,
we also prescribe nonhomogeneous Dirichlet boundary condition uD = 0.5 in the
direction x1. Further, the constant traction of density ft = 200 is acting on the upper
side in the normal direction The material parameters are set as follows: E = 206900
(Young’s modulus) and ν = 0.29 (Poisson’s ratio). The body is discretized into 9600
elements and 11529 nodes.

For the spatial discretization of Ω, let us consider hexahedral meshes generated by
our code decomposed into 5 subdomains using Metis. An example of such decompo-
sition is depicted in Figure 1.

For the computations in our implementation, we used the iterative PCGP algo-
rithm, which is suitable for use with the Dirichlet preconditioner, and the value of the
stopping criterion sets to 1e-9.

The total displacement and distributions of the HMH stress are depicted in Figures
2 left and 2 right, respectively.
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Figure 2: The total displacement on deformed body (left) and the HMH stress on de-
formed body (right).

6 Concluding remarks

The paper is focused on an efficient and flexible implementation of elastic problems.
We have mainly proposed an innovative combination of vectorized and parallel ap-
proaches. The vectorized approach was used for assembling stiffness matrices, and
the parallel approach was used for solving more significant benchmarks and the faster
solution. We used the TFETI domain decomposition method, and the correspond-
ing problem was solved by dual formulation. The algorithms were implemented in
Matlab and were run in parallel by Matlab Parallel Toolbox. The performance of our
algorithms was demonstrated on the 3D elastic L-shape body. We plan to apply this
combination of approaches also to elastoplastic problems.
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