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Abstract 
 

The current investigation presents a novel approach to detect cracks using the 
variational autoencoder (VAE). In this method, the input image is first divided into 
multiple segments using sliding windows and then fed into the VAE sequentially. The 
use of sliding windows effectively limits the number of neural nodes in the input layer 
of the VAE, which enhances the method's robustness. Additionally, the sliding 
window technique allows for the image information to be viewed as a time series, 
with cracks being treated as anomalies in the time series. By using the sliding window 
VAE (SW-VAE) with robust properties, such anomalies can be discarded during the 
reconstruction process. As a result, the detection of cracks can be achieved by 
comparing the difference between the input and output of the SW-VAE. Notably, this 
technique does not require positive sample training or learning image features specific 
to cracks, thus avoiding the challenge posed by the lack of training data or imbalanced 
datasets. 
 

Keywords: crack detection, variational autoencoder, sliding windows, serialized 
input, anomaly detection, robustness, unsupervised learning.  
 
 
 
 
 

 
 

An Unsupervised Crack Detection Approach 
Based on Dliding Window Variational 

Autoencoder 
 

Y.H. Wei1,2 and Y.Q. Ni1,2 
 

1Department of Civil and Environmental Engineering, The Hong 
Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 
2Hong Kong Branch of Chinese National Engineering Research 
Center on Rail Transit Electrification and Automation, Hong 

Kong 

 
 

Proceedings of the Seventeenth  International Conference on  
Civil, Structural and Environmental Engineering Computing  

Edited by: P. Iványi, J. Kruis and B.H.V. Topping  
Civil-Comp Conferences, Volume 6, Paper 5.2 

Civil-Comp Press, Edinburgh, United Kingdom, 2023 
doi: 10.4203/ccc.6.5.2 

Civil-Comp Ltd, Edinburgh, UK, 2023 
 



2 
 

1  Introduction 
 

The existence of cracks within a structural system may lead to a reduction in its 
stiffness, ultimately resulting in significant hazards [1, 2]. Thus, the detection and 
identification of cracks are crucial topics in the domain of structural health monitoring 
(SHM). Traditional manual methods have demonstrated limitations in identifying 
cracks in a timely manner. In light of this, given the contemporary era of rapid 
advancement in artificial intelligence, it is imperative to propose automatic crack 
identification techniques based on deep learning. 
 

Generally speaking, deep learning based crack detection approaches can be 
classified into two main categories: supervised learning and unsupervised learning. 
The supervised learning based crack identification methods have demonstrated 
outstanding performance when a sufficiently large dataset is available for model 
training [3]. Nonetheless, in situations where training data is inadequate, or there is a 
substantial imbalance between positive and negative samples, supervised learning 
based crack identification methods tend to face difficulties in achieving satisfactory 
outcomes [4, 5]. Therefore, the development of unsupervised techniques for crack 
detection holds significant value for various application scenarios. 

 

Studies have shown that unsupervised learning can be effectively utilized for 
identifying outliers in time series data. The presence of outliers can disrupt the 
temporal structure between data points in a time series. However, a probabilistic 
model with robust properties can mitigate the impact of occasional outliers [6]. 
Moreover, due to environmental factors and the influence of data acquisition 
equipment, noise often accompanies the collected time series. Therefore, treating the 
collected time series as random variables and modeling them with a probabilistic 
model is more reasonable. 

 
Based on the analysis presented above, this research aims to transform images into 

sequence information that mimics time-series data. As a result, cracks present in the 
images can be treated as outliers and eliminated using a robust probabilistic model 
through unsupervised learning. 

 
As a form of deep learning algorithm, the variational autoencoder (VAE) [7] 

exhibits both unsupervised learning capabilities and probabilistic modeling properties. 
Furthermore, the presence of Kullback-Leibler (KL) divergence in the loss function 
confers excellent regularization properties upon the VAE model, rendering it robust 
to outliers. Hence, this study employs VAE to perform probabilistic modeling of input 
image information. To serialize image information, we propose a sliding window 
strategy that segments image data into fragments, which are subsequently input into 
the VAE model in a sequential manner. This way, crack information in the image can 
be treated as an outlier in the time series and discarded by the robust sliding window 
VAE (SW-VAE). Finally, crack information can be revealed by comparing the input 
image with the reconstructed image output by the SW-VAE. 
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2  Deriving the loss function of SW-VAE 
 

The VAE algorithm treats images x  as random variables generated through latent 
variables z .

 
According to the Bayesian law, the posterior of latent variables can be 

obtained through the following:
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The prior ( )p z  in VAE is set as the standard normal distribution. However, since the 
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Omit the nonnegative KL term on the right hand side (RHS), then: 
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The terms on the RHS are called evidence lower bound (ELBO). Combining equation 
(2) with inequality (3), it can be observed that maximizing the ELBO can push the 
estimate ( )q z | x  towards the true posterior ( )p z | x . The VAE combines the encoding 
process with ( )q z | x  and the decoding process with ( )p x | z , resulting in: 
 

( )log ( ) [log ( )] ( ( ) || ( )).qp E p KL q p z|xx x | z - z | x z
  

     (4) 
where   and  respectively represent the parameters of the encoder and decoder in 
the VAE. To accommodate the properties of stochastic gradient descent in deep 
learning, the loss function needs to take the negative of the ELBO and minimize it: 
 

( )= - [log ( )] ( ( ) || ( )).qL E p KL q p
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     (5) 

As the image x  is partitioned into several parts 
1

n i
w x  with a sliding window, the 

integrated loss function is represented as: 
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3  Crack Detection with SW-VAE 
 

In this study, SW-VAE is employed to detect cracks in the rotating binaural of the 
high-speed railway catenary system. The grayscale image of the rotating binaural 
component is shown in Figure 1. Sliding the window down the lengthwise direction 
of the image x , moving it down one pixel at a time. Assuming the length of the 
window is wL  and the width of the image is W , the size of the image extracted by the 

window in each step is i
w wx L W  . After being extracted by the sliding window, i

wx  
is first compressed into latent variables through the encoder, and then, after sampling, 
the latent variables are input into the decoder to output the reconstructed ˆi

wx . Each 

pixel of the reconstructed ˆi
wx  is represented by an individual normal distribution. For 

convenience, only mean values 
ˆi
wx

  of ˆi
wx  are used to reconstruct the image. Since 

there is a lot of overlap between the reconstructed 
ˆi
wx

 , we only combine the middle 

line of each 
ˆi
wx

  into the reconstructed image x̂ . The parts at approximately one-half 

of the wL  length from the beginning and end of the image are scanned less frequently 
by the sliding window mechanism than other parts. The parts about half the length of 
the sliding window at the beginning and end of the image are scanned less frequently 
by the sliding window mechanism than other parts. Therefore, these parts can be filled 
with zeros or left for unimportant components.  
 

 

Figure 1: SW-VAE for crack detection on rotating binaural. 
 

Besides cracks, we noticed that the SW-VAE may also remove the highlight of the 
grayscale image as outliers. However, as the pixel values of cracks are typically low 
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and those of the highlighted parts are high, the difference between the reconstructed 
and original images is positive in the crack area but negative in the highlighted area. 
To effectively display the location and shape of the cracks, we retain only nonnegative 
values during interpolation. It is found from Figure 1 that the crack of the rotating 
binaural is displayed by subtracting the original image from the reconstructed image. 

 
The size of the sliding window in SW-VAE has a significant impact on the 

reconstructed image. If the window size is too small, the overlap between windows is 
reduced and the correlation between them is weakened, which affects the validity of 
treating them as a time series. On the other hand, if the window size is too large, the 
number of parameters in the input layer of the VAE increases, which may lead to 
overfitting of image information and make it harder for cracks to be identified as 
outliers and automatically removed.  

 
Figure 2 displays the reconstruction performance of SW-VAE with various sliding 

window sizes. Since the reconstruction is carried out by selecting the middle row of 
each sliding window to form the image, the window sizes are set to odd numbers. It 
is evident that SW-VAE fails to achieve the desired performance when the window 
size is either too small or too large. Setting the window size to 1/3~1/5 of the overall 
image size produces satisfactory results for SW-VAE. The performance of SW-VAE 
with Lw=101, which is shown in Figure 1, demonstrates the effectiveness of this 
window size setting. 

 
 

 

Figure 2: Reconstruction performance of SW-VAE with various window sizes. 
 

 

4  Conclusions and Contributions 
 

This article uses sliding windows to transform image information into time series data, 
thereby treating cracks in the image as outliers in the sequence. Due to the robustness 
of SW-VAE, the crack information in these serialized images is treated as outliers and 
automatically removed. As a result, the cracks can be revealed by comparing the 
reconstructed image from SW-VAE with the original image. 
 
SW-VAE has the advantage of not requiring the use of datasets containing cracks for 
model training, nor does it require the model to learn the normal pattern of images 
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through positive samples without crack information. As a result, SW-VAE provides a 
viable option for crack detection when training datasets are scarce. 
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