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Abstract 
 
In order to account for hydraulic damping in liquefiable areas, a small-strain damping 
model in shear for gravelly soil subjected to different loading frequencies was 
presented. The total damping was decomposed into skeleton damping and hydraulic 
damping induced by motion of viscous pore fluid relative to skeleton. The former was 
represented by an empirical expression while the latter term was obtained based on 
Biot theory. The fitting parameters were then determined by using Particle Swarm 
Optimization (PSO) algorithm. Results were found to match well with experimental 
data from torsional shear test for gravelly soils of various particle size distributions 
and under different isotropic confining pressures. Parametric analysis indicated that 
the hydraulic damping increases monotonically with rising mean grain size and 
loading frequency, whereas a critical grain size exists at which the total damping takes 
its minimum value under a given frequency. 
 

Keywords: skeleton damping, hydraulic damping, Biot theory, particle swarm 
optimization, gravelly soils 
 
 
 

1  Introduction 
 

To ensure the safety of underground structures in earthquake prone areas, the seismic 
stability of structures must be tested. It should be noted, however, that the reliable 
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dynamic properties (including liquefaction resistance) of soils are prerequisites for 
use in seismic analysis of underground structures.  
 

Pore fluid induced damping (hydraulic damping) is generally negligible in 
current geotechnical engineering research, even in liquefiable areas. However, this 
assumption is found to be invalid for soils with high permeability (gravels) and high 
frequency excitations [1]. The hydraulic damping has been investigated in some work 
generally in resonant column tests, calculated by means of half-power bandwidth 
(HPB) and free vibration decay (FVD) methods. Investigations of saturation effects 
on damping cover sands [2–4], silts [5] as well as clayed soils [6,7]. The increase of 
damping was found with increasing moisture content and decreasing confining 
pressure, and the effects of moisture content are noticeable at low confining pressure 
[5,6]. Transparent soil, which is widely used to track the behaviors of natural saturated 
soil, has been studied in [8]. It is also found therein that dynamic damping is 
remarkably influenced by properties of pore fluid. 

 
However, focuses of previous studies are mostly laid on qualitative descriptions 

from observations [3,4]. Theoretical studies on hydraulic damping include [1,9-10], 
in which the Biot flow subjected to compression and torsional waves was evaluated 
analytically. The effect of non-Poiseuille flow at high frequencies was incorporated 
in [11]. In their model, the hydraulic damping was indirectly calculated from the 
difference between total damping and skeleton damping, and the skeleton damping 
was considered as a constant therein for ease of calculation. The consideration of 
hydraulic damping for coarse sands and gravels was highlighted from parametric 
studies.  

 
In this paper, a total damping model for gravelly soils in shear under different 

loading frequencies is presented. The total damping is decomposed into skeleton 
damping and hydraulic damping, represented by empirical and analytical expressions, 
respectively. The soils could be unsaturated by simplifying the air-water mixture into 
a homogeneous single fluid phase as in [1], and the fluid compressibility is revised by 
moisture content. However, since the effects of moisture content do not contribute to 
rotational motion subjected to torsional waves, they are considered as a separated 
multiplier in the hydraulic damping herein. Key parameters affecting skeleton 
damping and hydraulic damping are explicitly incorporated with fitting parameters. 
In the following sections, the damping model was first reviewed, followed by the 
determination of fitting parameters through Particle Swarm Optimization (PSO) 
algorithm. Results were subsequently compared to experimental data from torsional 
shear test. Finally, parametric study was carried out to illustrate the effects of median 
grain size, effective stress and loading frequency on the damping. 

 
 

2  Assumptions and Damping Model 
 

In the presented model, several assumptions are made: (i) measurements in shear of 
soil are performed in linear range (this implies small-strain) with varying excitation 
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frequencies. That is, damping is of the minimum value, and the linear constitutive law 
is applied to solid skeleton; (ii) only the low frequency response in Biot model is 
involved, i.e., the pore fluid follows the Poiseuille flow. The low frequency bound of 
Biot media is distinguished by a characteristic frequency 
 fc=ng/2πk, (1) 
where, n and k denote the porosity and hydraulic conductivity respectively, and g is 
the acceleration of gravity.  
 

Under the above assumptions, the total small-strain damping of Biot media in 
shear could be decomposed into skeleton damping and hydraulic damping induced by 
Biot flow, which is expressed as 
 𝐷 , 𝐷 𝐷 , (2) 
where 𝐷  is the damping of the media. The subscript α 𝑚𝑖𝑛, 𝑠 states the minimum 
value of damping in shear, whereas subscript α (α=s, f) denotes variables associated 
with solid and fluid, respectively. Ds is the function of uniformity coefficient Cu, 
median grain size d50 and mean effective stress σ’ 

0, as observed in small-strain dynamic 
test. The specific expression was recommended in [12] as:  

 𝐷 𝛼 𝐶 𝑑 , (3) 

in which Pa is pressure at atmosphere, α0, α1, α2 and α3 are fitting parameters from 
experiments.  
 

Df is mainly induced owing to the relative motion of viscous pore fluid with 
respect to solid, and is found to dependent on moisture content. Therefore, Df is set to 
take the following form: 
 𝐷 ∑ 𝑔 𝑆 ℎ 𝜃 𝜃 , (4) 
where, S is the moisture content, and θα (α=s, f) denotes angular displacement of α 
component subjected to torsion waves. 
 

In Eq. (4), the first order approximation could be made based on assumption (i) 
 

 𝐷 𝑔 𝑆 ℎ 𝜃 𝜃 . (5) 
 
The g0(S) would be further expanded into exponential function of S, with 

undetermined coefficients ηj and power ζ, as shown in Eq. (6): 
 

 𝑔 𝑆 ∑ 𝜂 𝑆 𝜂 𝜂 𝑆 . (6) 
 
The function h0(θf - θs) is tackled in the similar way with undetermined 

coefficients vk and power λ: 
 

 ℎ 𝜃 𝜃 ∑ 𝜐 𝜃 𝜃 𝜐 𝜐 𝜃 𝜃 , (7) 
 
in which the term (θf - θs) will be deduced below in an analytical manner following 
Biot theory.  
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3  Analytical Expression of Damping    
 

The governing equation for a saturated poroelastic soil column subjected to rotational 
wave is given by [13]  
 

 1 𝑛 𝜌 𝐺 𝜃 𝜃  (8-a) 

 𝑛𝜌 𝜃 𝜃 , (8-b) 

 
where G denote the shear modulus of the dry porous frame. The rightmost term 
denotes the interaction between solid and fluid phases and is canceled out by coupling 
Eqs. 8(a) and (b). As shown above, the effects of pore pressure are excluded in 
tortional motion, and the modulus involved is independent on the degree of saturation. 
Therefore, it is reasonable to consider the effects of saturation degree as a separate 
correction multiplier in the present model, as illustrated in Eq. (4).  

 
Assuming that the steady-state forced motion varies in a harmonic form 

θα=�̅� (z)eiωt (α=s, f) with ω being the circular frequency, inserting Eq. 8(b) into Eq. 
8(a) and canceling �̅�s lead to 

 
/

�̅�  (9-a) 

 𝜌 . (9-b) 

 
The general solutions of Eq. (9) can be written as 
 

 �̅� 𝐴 𝑠𝑖𝑛 
/

𝑧 𝐴 𝑐𝑜𝑠
/

𝑧 , (10) 

 
where the positive z-direction is taken downwards with the origin set at top of 
specimen. The constants A1 and A2 are determined from the boundary conditions in 
resonant column test, including the loading to the column top and fixed end at the 
bottom [10]  
 

 
1 𝐴 𝐺𝐽

/
𝐴 𝐼 𝜔 𝑇

𝜃 𝐻, 𝑡 0
, (11) 

 
where T0 is the torque amplitude, H is the height of specimen, J is polar moment of 
inertia of soil column and It is the mass polar moment of inertia of loading system. 
Solving Eq. (11) results in 
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Substituting Eq. (12) into Eq. (10) leads to the fluid rotation in torsional 
resonance test 

 𝜃
 

/
 

/
 

/

∙
/

 
/

. (13) 

 
The solid displacement can be obtained in the similar manner as shown in [10]. 

Therefore, the motion of fluid relative to solid can be formulated as 
 

 𝜃 𝜃
 

/
 

/
 

/

/
 

/

   

 
 (14-a) 

 𝛼
/

, (14-b) 

 
in which I=ρsatHJ is the mass polar moment of inertia of the saturated specimen, ρsat 
= nρf + (1-n)ρs is the density of saturated soils, Vs= 𝐺/𝜌  is shear wave velocity 
regardless of relative motion between the two phases. It is evident and reasonable 
from Eq. (12) that the motion of pore fluid relative to solid vanishes for impermeable 
soils (k=0). 
 

Finally, the total small-strain damping in shear is reformulated as  
 

 𝐷 , 𝛼 𝑐 𝑑 1 𝜓 𝑆 𝜓 𝜓 ∙ abs 𝜃 𝜃 ,  (15) 

where ψ1 = η1/η0, ψ2=η0v0 and ψ3=η0v1 are to-be-determined parameters in the 
rearranged form to further reduce one parameter.  
 
 

4 Validations with existing experimental results 
 
4.1 Experiment [12] 
 

In this section, parameters in Eq. (15) are first determined by PSO algorithm, 
followed by comparison of predicted damping with measured one from fixed-free 
torsion experiments given in [12]. The specimen material is classified as poorly 
graded gravel (GPM) according to the British Standard Soil Classification System. 
The soil parameters for different specimens are listed in Table 1. The numbers in 
brackets stand for different mean effective pressures, and we use A(B/C)-i (i=1,2,3) 
to denote the specific test. The specimens have a diameter of 7.11 cm and height of 
14.3 cm, with moisture content of about 6%. The maximum dry density is 2267.2 
kg/m3 determined by proctor compaction method. The shear moduli of dry porous 
material were calculated from the empirical expression fitted in [12]. The ratio of mass 
polar moment of inertia of loading system to saturated specimen It/I is set to one in 
the fixed-free boundary condition.  
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Permeability was determined from the modified Kozeny-Carman (KC) equation 
presented in [14], which is expressed as 

 

 𝑘 𝑑 𝑎 ∙ sin ∙ ,  (16) 

 
in which μ is dynamic viscosity of pore water, e=n/(1-n) is the void ratio. a is the 
parameter by fitting with the particle size distribution (PSD), and the PSD for different 
specimens is depicted in Figure 1. The parameter k0 is the KC constant related to 
porosity, which is taken to be one herein based on the results in [15]. 
 
 
 

Specimen 
d50/ 
mm 

Cu a 
Moisture 

content/ %
n 

ρsat/ 
kg·m3 G / MPa 

A 1.48 32.7 0.459 5.6 0.19 2026.432
197.34 (1.25atm), 
290.34 (2.25atm), 
440.94 (4.25atm) 

B 1.48 32.7 0.427 5.5 0.20 2013.76 420.85 (4.25atm) 

C 2.12 49.7 0.426 5.9 0.19 2030.23 
204.37 (1.25atm), 
470.96 (4.25atm) 

 
Table 1 Soil parameters for different specimens 

 
 

 
 

Figure 1 Particle size distribution of three sets of specimens 
 

4.2 Validation and discussions 
 

The nine parameters in Eq. (15) were fitted using the data set for specimens A-
1, A-3, C-1 and C-2. The collected and fitted results are plotted in Figure 2, marked 
by solid scatter and dotted line, respectively.  
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α0 α1 α2 α3 ψ1 ζ ψ2 ψ3 λ 
7.30 0.002 -2.30 -0.74 -24.27 9.44 0.26 17.37 0.20 

 
Table 2 Fitted parameters in the present damping model 

 

Table 2 summarizes the nine fitted parameters. It is revealed that the increase of 
d50 and 𝜎  suppresses the skeleton damping, consistent with the findings in [12]. As 
expected, the hydraulic damping increases with larger relative motions. The predicted 
damping by the presented model for specimens A-2 and B-1 is illustrated in Figure 3. 
The slight decrease of measured Dmin,s below 1Hz could be attributed to the creeping 
of soils under such low loading frequency, which is not incorporated in the model. In 
general, it shows fairly satisfactory agreement between two sets of results. 

 
 

 
Figure 2 Variation of damping from measured and fitted results versus loading frequency. 

 

 
 

Figure 3 Predicted damping versus loading frequency for specimens A-2 and B-1. 
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To further investigate the effects of d50 on damping of the gravels, the total 
damping versus frequency is shown in Figure 4 for confining pressures σ’ 

0=1.25 and 
4.25 atm, respectively. Different values of d50=2.12, 4.24, 8.48 and 16.96 mm are used. 
Permeability varies according to Eq. (16) (k=2.46×10-4, 9.84×10-4, 3.93×10-3 and 
1.57×10-2 m/s), whereas other parameters remain constant as for specimens C-1 and 
C-2 considering that their variations are influenced by d50 much less than does k. 
 

 

 
 

Figure 4 Variation of Dmin,s versus loading frequency for different values of d50 (a) 
confining pressure σ’ 

0=1.25 atm, (b) σ’ 
0=4.25 atm. 
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0=1.25 atm, effects of loading frequency 
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10% for frequencies increasing from 0.5 Hz to 10.0 Hz; for d50=16.96 mm, however, 
values of Dmin,s vary about 50%, illustrating more hydraulic damping for larger d50 as 
shown in the subfigure. The total damping drops by half as d50 increases from 2.12 to 
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8.48mm, and rises for d50=16.96mm, this suggests that the effects of d50 on hydraulic 
damping surpass that on the skeleton damping and the viscous motion between two 
phases is predominant for d50=16.96 mm. In Figure 4(b), the hydraulic damping is 
very close to that for σ’ 

0=1.25 atm, while the skeleton damping is remarkably dropped 
due to higher value of σ’ 

0. The total damping rises slightly with d50 after the drop for 
d50 increasing from 2.12 to 4.24 mm. This demonstrates that the hydraulic damping 
cannot be neglected under high confining pressure. 
 

 
Figure 5 Variation of Dmin,s versus d50 for different loading frequencies (a) confining 

pressure σ’ 
0=1.25 atm, (b) σ’ 

0=4.25 atm. 
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relative motion between two phases is enhanced with larger values of d50. The effects 
of d50 on skeleton damping and on hydraulic damping cancel each other out at a 
critical value of d50. Besides, the critical d50 is advanced as the loading frequency 
increases, suggesting more hydraulic damping at high-frequency loadings. 

 
 

5  Conclusions 
 

In this paper, a small-strain damping model in shear for gravelly soil under various 
loading frequencies was presented. Decomposing the total damping into skeleton 
damping and hydraulic counterpart, the former was expressed using a classical 
empirical formulation; while the hydraulic model was proposed within the Biot theory 
in low frequency part, in which the relative motion between pore fluid and solid was 
deduced with a fixed-free boundary condition. The fitting parameters in the damping 
model were evaluated based on the particle swarm optimization algorithm.  
 

The negative correlation between d50, σ’ 
0  and skeleton damping was revealed 

from the fitting results, consistent with previous studies. Besides, results showed that 
the hydraulic damping rises with increasing relative motion between pore fluid and 
solid as expected. Finally, after comparison of the predicted damping to the measured 
data for another two specimens, parametric analysis was performed to illustrate the 
effects of d50, σ’ 

0  and loading frequency on damping. It was found that effects of 
loading frequency tend to be obvious with increasing d50, the values of Dmin,s vary 
about 50% for frequencies increasing from 0.5 Hz to 10.0 Hz and σ’ 

0=1.25 atm. There 
existed a critical value of d50 at which Dmin,s takes its minimum value, i.e., the effects 
of d50 on skeleton damping and on hydraulic damping could cancel each other out. 
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