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Abstract 
 

This paper proposes a furthering approach for extracting the first several flexural 
and torsional-flexural frequencies of thin-walled box girders from the residual 
contact response of a two-wheel test vehicle passing the bridge. Unlike most 
previous studies, the single-axle test vehicle is modeled as a two degree-of-freedom 
(DOF) system to account for the two wheels’ rocking motion, which relates to 
torsional-flexural motion of the beam. To start, a new theory for the mono-
symmetric thin-walled beam subjected to a two-wheel moving vehicle is presented. 
The wheel contact response derived herein (which is free of vehicle frequencies) 
enables us in the first stance to remove the overshadowing effect on bridge 
frequencies brought by outstanding vehicle frequencies. The other concern in 
extracting the bridge frequencies is the noises posed by random pavement 
roughness, which is overcome through the use of the residual contact response 
generated by two identical connected vehicles. This paper furthers the existing ones 
in that the wheel response (i.e. the vehicle’s rocking motion) is utilized to extract the 
torsional-flexural frequencies of the bridge, making use of the linking action 
between the vehicle’s two wheels and the bridge’s cross section.  
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1  Introduction 
 

Using the modal parameters, such as frequency, mode shape, damping ratio and 
others, to assess the health condition of a bridge has been widely accepted in 
engineering practice [1-4]. Previously, measurement methods using fixed sensors 
have been conducted for bridges to obtain their modal properties via the use of 
excitation sources such as ambient vibrations, forced vibrations, impact vibrations, 
etc. These methods are referred to as the direct approach, as they rely on the 
collection of vibration data generated by a network of sensors directly deployed on 
the bridge. Such an approach was often blamed for issues such as the high cost and 
labor required in installation and maintenance, the huge amount of daily generated 
data that can hardly be efficiently treated, and the relatively short lifespans of 
sensing devices compared with the bridge to be monitored. Moreover, the high cost 
of deployment has prohibited the direct approach from being applied to bridges of 
medium- and small-spans. This has presented a threat to the overall health 
monitoring of highway or railway networks, as the majority of medium- and small-
span bridges that are not monitored constitute the major parts of each network. 
Clearly, a rapid measurement approach using speedy and mobile techniques for 
bridges is all that is needed to meet the need of the tremendous amount of bridges 
worldwide. 

 
Aimed at tackling the problems mentioned above, the vehicle scanning method 

(VSM) or indirect approach that utilizes a moving test vehicle to extract the dynamic 
properties of the bridge was proposed in 2004 [5,6]. Based on vehicle-bridge 
interaction (VBI), the dynamic properties of a bridge, e.g., frequencies, damping 
ratios and mode shapes, etc., can be identified from the response recorded of an 
instrumented test vehicle during its passage over the bridge. Because of the obvious 
advantages of mobility, economy, and efficiency, the VSM has attracted the 
attention of researchers worldwide. In less than two decades, an awful amount of 
works has been conducted on the identification of various properties of bridges, such 
as frequencies, damages, modal shapes, damping ratios, time-varying parameters, to 
name a few. The application of this method has also been demonstrated in a number 
of model and field tests.  

 
Previously, the single-axle test vehicle was modelled as a single degree-of-

freedom (DOF) system for its simplicity and resemblance with the underlying 
theory. In fact, the single-axle test vehicle contains two wheels and one axle. The 
two wheels will behave in the form of rocking motion when they are differentially 
excited, i.e., when passing paths of uneven surfaces. To accommodate such an 
effect, a more realistic approach is to treat the two wheels each as one DOF system, 
and connected by a rigid axle. With this, both the rocking and vertical motions can 
be duly captured. In this paper, the rocking motion of the two-wheel test vehicle will 
be exploited to extract the torsional-flexural frequencies of the thin-walled beams. 

 
To meet the goal described above, a new theory will be presented for a mono-

symmetric thin-walled beam subjected to the moving test vehicle with two wheels. 
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Closed-form solutions will be derived for the vehicle, beam and wheel contact 
responses. The noisy surface roughness effect will be eliminated by using the 
residual contact response of two connected identical vehicles, rather than the 
original single vehicle response.   

 

2  Theoretical derivations 
 

To be more realistic, the single-axle test vehicle will be modelled as a damped 
two-DOF system to consider both the vertical ( vy ) and rocking ( v ) motions of the 

two wheels in this study. The axle is assumed to be rigid and fitted with three 
sensors, one at the centre and the other two at locations close to the two wheels; the 
latter will be referred to as wheel sensors. Based on Vlasov’s hypothesis, a thin-
walled box girder of length L0 is modelled as a one-dimensional beam acted upon by 
the vehicle with two wheels moving at speed V, as shown in Figure 1, where the 
shear centre S is separate from the centroid C. The origin of the coordinate system is 
located at the centroid C, but the responses of the thin-walled beam are measured 
with respect to the shear centre S. For the mono-symmetric beam in Figure 1, the 
lateral and torsional vibrations are coupled, while the flexural (vertical) vibration is 
uncoupled. To facilitate derivation of the new, closed-form solutions, the damping 
of the beam is neglected, but will be included in the numerical study later on. 

 
Based on Vlasov’s theory of thin-walled beams, the vertical, lateral and 

torsional equations of motion of the beam under the damped 2-DOF moving vehicle 
can be respectively given as follows: 

 '''' ( , ) ( , ) ( ) ( )+ ( ) ( )L R
z c cEI v x t mv x t F t x Vt F t x Vt      (1) 

 '''' ( , ) ( , ) ( , ) 0yEI w x t mw x t m x t    (2) 

 
 '' 2 2( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( )L L R R
c c

EI x t GJ x t m r x t m w x t

e F t x Vt e F t x Vt

    

 

    

   

 
 (3) 

where ( , )v x t , ( , )w x t  and ( , )x t  denote the vertical, lateral and torsional 
displacements, respectively, of the beam; an overdot ( • ) and prime (  )' denote the 
derivative with respect to time t and axis x, respectively;   is Dirac’s delta function; 

0e , Re , Le  respectively denote the eccentricities of the central, right and left sensors 

from the centroid C, 0 0 / 2Re e l   , 0 0 / 2Le e l  ; and  L
cF t  and  R

cF t  

respectively the right and left contact forces,  

 0 0( ) ( ) / 2 ( ) ( ( ) ( ) / 2 ( ))
( )

2

L L
v v v v c v v v cL

c

m g k y t t l u t c y t l t u t
F t

      


 
 (4) 

 0 0( ) ( ) / 2 ( ) ( ( ) ( ) / 2 ( ))
( )

2

R R
v v v v c v v v cR

c

m g k y t t l u t c y t l t u t
F t

      


 
 (5) 
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The equations for the vertical and rocking motions of the vehicle are  

( ) ( ) ( ) ( )
( ) ( )+ ( )

2 2

L R L R
c c c c

v v v v v v v v

u t u t u t u t
m y t c y t k y t k c

 
  

    (6) 

2 2 2 2
0 0 0 0

0 0

( ( ) ( )) ( ( ) ( ))
( ) ( ) ( )

4 4 4 4

R L R L
v v v c c v c c

v v v v

l c l k l c u t u t l k u t u t
J t t t

l l
    

   
  

 
(7) 

where  R
cu t  and  L

cu t  are the displacements of the contact points of the right and 

left wheels, respectively; and g the acceleration of gravity. Other parameters in Eqs. 
(1)-(7) are given as follows: For the vehicle, V = moving speed, vk  = stiffness 

coefficient, vc  = damping coefficient, vJ  = mass moment of inertia, vm  = mass, 0l  = 

distance between two wheels (or sensors); and for the beam, (E, G) = elastic and 
shear moduli, ( zI , yI ) = moments of inertia about the z- and y-axis, I  = warping 

constant, J = torsional moment of inertia, m = mass per unit length,   = offset 
between S and C along the y-axis, and r = polar radius of gyration. 
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(a)                                            (b)

Figure 1. Vehicle-bridge model: (a) perspective view, (b) profile view. 
 

In practice, both the lateral and torsional displacements are prevented by 
diaphragms and the vertical displacement by end bearings of the thin-walled beam, 
but the end cross sections are free to warp. For the problem considered, the 
boundary conditions are: 

   00, , 0v t v L t  ,      00, , 0v t v L t    (8) 

   00, , 0w t w L t  ,    00, , 0w t w L t    (9) 

   00, , 0t L t   ,     00, , 0t L t     (10) 
and the initial conditions are 

 , 0 0v x  ,    , 0 0v x   (11) 

 , 0 0w x  ,    , 0 0w x   (12) 
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 , 0 0x  ,    , 0 0x   (13) 

For the boundary conditions in Eqs. (8)-(10), the displacements of the beam can 
be approximated as:  

1 0

( , ) ( )sin( )n
n

n x
w x t Z t

L





 , 
1 0

( , ) ( )sin( )n
n

n x
v x t Y t

L





 , 

1 0

( , ) ( )sin( )n
n

n x
x t Θ t

L






  

(14a-c) 

where ( )nZ t , ( )nY t  and ( )nΘ t  denote the n-th modal coordinates. It should be noted 

that approximate functions given in Eqs. (14) meet the condition of admissibility 
required in mechanics formulation. The sinusoidal functions are only used to express 
the variation of each displacement component between the two boundary ends. The 
torsional-flexural coupling is still there, as can be seen from the modal equations to 
follow. Besides, the accuracy of this approximation will be validated independently 
by the finite element method (FEM). 
 

Substituting Eqs. (14a-c) into Eqs. (1)-(3), multiplying both sides by 
, integrating with respect to x from 0 to 0L , and using the property for 

the Dirac’s delta function 0 0( ) ( ) ( )f x x x dx f x



   and the orthogonality 

conditions for trigonometric functions, one can arrive at the following modal 
equations for the thin-walled beam: 

2

0 0

2( ( )+ ( ))
( ) ( ) sin( )

L R
c c

n yn n

F t F t n Vt
Y t Y t

mL L

 
 (15) 

2( ) ( ) ( ) 0n zn n nZ t Z t Θ t     (16) 

2
2 2 2 2

0 0

2 ( ) ( )
( ) ( ) ( ) sin( )

( )

L L R R
c c

n n n n

e F t e F t n Vt
Θ t Θ t Z t

r m r L L
 

 

    
 

   (17) 

By defining the n-th modal flexural, lateral, and torsional frequencies of the beam as 

 
4

2
4
0

( )z
yn

EI n

mL

  , 
4

2
4
0

( )y
zn

EI n

mL


  , 

2 4
2 0

2 2 4
0

( ) ( )

( )n

GJ n L EI n

m r L



 






  (18a-c) 

and assuming the vehicle mass to be far smaller than the bridge’s, i.e., 0vm mL , 

the modal equations of the beam reduce to 

 
2

0 0

2
( ) ( ) sin( )v

n yn n

m g n Vt
Y t Y t

mL L

 
 (19) 

 2( ) ( ) ( ) 0n zn n nZ t Z t Θ t     (20) 

 
2 0

2 2 2 2
0 0

2
( ) ( ) ( ) sin( )

( )
v

n n n n

e m g n Vt
Θ t Θ t Z t

r m r L L
 

 
  

 
   (21) 
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In the following, the coupled lateral ( , )w x t  and torsional ( , )x t  displacements will 

be solved first. Letting ( ) ni t
n nZ t P e  , ( ) ni t

n nΘ t Q e  , one can derive from Eqs. (20) 

and (21) the homogeneous equations for the lateral and torsional motions: 

  2 2 2 0n zn n n nP Q       (22) 

  2 2 2
2 2

0n n n n nQ P
r

  


  


 (23) 

or 

 

2 2 2

2 2 2
2 2

0

0

n zn n
n

nn n n

P

Q
r 

  
   



 
              

 (24) 

For nontrivial solution, the determinant of the above matrix should be zero, i.e., 

   4 2 2 2 2 21 0n zn n n zn n             (25) 

where the offset parameter   is defined as 

 
2

2 2r







 (26) 

From the fourth-order polynomial Eq. (25), the n-th dual frequencies can be solved 
as 

    22 2 2 2 2 2

2
4

2(1 )

zn n zn n zn n

n

       




   



 (27a) 

 

   22 2 2 2 2 2

2
4

2(1 )

zn n zn n zn n

n

       




   



 

(27b)
 

The two frequencies 
n

   and 
n

  are conjugate, representing the low- and high-

frequency components, respectively, of the torsional-flexural motion. In this study, 
the frequency 

n
   is called the n-th “minus” torsional-flexural frequency, and 

n
   

the n-th “plus” one. For bisymmetric cross sections, i.e., with the offset   = 0, the 
above frequencies will reduce to those commonly known.  

 
To solve the coupling Eqs. (20) and (21), one can transform them into the s-

domain by the Laplace transformation. For null initial conditions, (0) 0nZ  , 

(0) 0nZ  , (0) 0nΘ   and (0) 0nΘ  , the transformed equations are 

  2 2 2( ) ( ) 0zn n ns Z s s Θ s     (28) 

  
2

2 2 0
2 2 2 2 2 2

0

2
( ) ( )

( )( )
v n

n n n
n

e m gΩs
s Θ s Z s

r mL r Ω s


 
  

  
 (29) 

where ( )nZ s  and ( )nΘ s  respectively denote the Laplace transforms of ( )nZ t  and 

( )nΘ t .  
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The solutions to Eqs. (28) and (29) are  

    
2

0
2 2 2 2 2 2 2

0

2
( ) n v

n

n n n

Ω s e m g
Z s

mL r s Ω s s


  

 
  

 (30) 

    
2 2

0

2 2 2 2 2 2 2
0

2 ( )
( ) n v yn

n

n n n

Ω e m g s
Θ s

mL r s Ω s s



  




  
 (31) 

where nΩ  is the speed parameter, 

 
0

n

n V
Ω

L


  (32) 

The time-domain expression for Eq. (30) is 
 1 2 3( ) sin sin sinn n n n nn n

Z t A Ω t A t A t      (33) 
in which 

 2 2
1n n n n

A Ω     ,  2 2
2n nn n

A Ω    ,  2 2
3n nn n

A Ω      (34a-c) 

and 

    
0

2 2 2 2 2 2 2
0

2 v n

n nn n n n

e m gΩ

r mL Ω Ω


      


  

 (35) 

In a similar way, the time-domain expression for Eq. (31) is 
 1 2 3( ) sin sin sinn n n n nn n

Θ t B Ω t B t B t      (36) 
in which 

2
1

1 2
1n zn

n
n

A
B

Ω




 
  

 
, 

2
2

2 2
1n zn

n

n

A
B


  

 
   

 
, 

2
3

3 2
1n zn

n

n

A
B


  

 
   

 
 (37a~c) 

With the use of Eqs. (33) and (36), the lateral and torsional displacements of the 
beam can be obtained from Eqs. (14b) and (14c) as 

  1 2 3
1 0

( , ) sin sin sin sin( )n n n nn n
n

n x
w x t A Ω t A t A t

L

  





    (38) 

  1 2 3
1 0

( , ) sin sin sin sin( )n n n nn n
n

n x
x t B Ω t B t B t

L

   





    (39) 

The vertical response  ,v x t  is independent of the torsional-flexural motion, 

which can be solved as: 

  
1 0

( , ) sin sin sin( )n n n yn
n

n x
v x t C Ω t S t

L






   (40) 

where 

 
3
0

4 4

2 v
stn

z

m gL

EI n 
  , 

0
n

yn

n V
S

L




 , 
21

stn
n

n

C
S





 (41a-c) 

 

3  Results 
 

The FEM is used to verify the reliability of the theory newly presented in 
Section 2. For the bridge midspan, the lateral, vertical and torsional displacements 
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computed analytically using 30 modes were compared with the FEM results in 
Figures. 2(a)-(c), respectively. Clearly, excellent agreement has been achieved 
between the analytical and numerical solutions. For the vehicle and contact 
responses, it goes without saying that excellent agreement has also been achieved 
between the analytical and numerical solutions. But they were omitted to save the 
paper length. 

D
is

pl
ac

em
en

t (
m

)

To
rs

io
na

l a
ng

le
 (

ra
d)

 
Figure 2. Bridge responses at midspan: (a) lateral, (b) vertical, (c) torsional. 
 
The right- and left-sides accelerations calculated by theory and FEM solutions 

were compared those obtained backwardly in Figures. 2 and 3, respectively. A good 
agreement has been achieved between the analytical and FEM solutions in time and 
frequency domains. This agreement confirms the reliability of the closed-form 
solution derived in Section 2, together with the procedure for computing the contact 
response. Of interest is that from the right and left contact spectra of Figure. 2(b) 
and 3(b), a large number of frequencies of the bridge has been “released” via 
suppression of the vehicle frequencies yv

D  and v
D
 , or the so-called masking effect. 

In fact, the frequencies that can be identified for the bridge are not limited to the first 
four flexural 1y , 2y , 3y  , 4y , and eight “minus” and “plus” torsional-flexural 

1
  , 

1
  , 

2
  , 

2
  , 

3
  , 

4
  , 

5
  , 

6
  , because there are many more beyond the 

(b) 

(c) 

(a) 
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range of the figure shown. Such results coincide well with the derivation of closed-
form solutions in Section 2.  
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(a)                                                               (b) 
Figure 2. Right contact accelerations calculated by Eq. (48), theory and FEM: (a) 

time history, (b) FFT.
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(a)                                                              (b) 
Figure 3. Left contact accelerations calculated by Eq. (49), theory and FEM: (a) time 

history, (b) FFT.
 

4 Conclusions and Contributions 
 
A theory has been presented for retrieving the flexural and flexural-torsional 
frequencies of thin-walled beams from the rocking motion of the two wheels of a 
moving test vehicle modeled as a two DOF system. Closed-form solutions have 
been firstly derived for the vehicle, beam and wheel contact responses. Due to the 
mono-symmetry of the beam, the torsional-flexural frequencies always appear in 
conjugate “minus” and “plus” frequencies in relation to the low- and high-frequency 
components. The two disturbing factors, i.e., vehicle’s self frequencies and bridge’s 
surface roughness, have been eliminated by using the residual contact response of 
two connected identical vehicles. The reliability of the proposed theory has been 
validated by the FEM and confirmed in the parametric analysis. 
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