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Abstract 
 

Based on the Vehicle-Bridge Interaction (VBI) theory, a moving instrumented vehicle 
is designed as a dynamic information scanner to detect the modal properties of a 
bridge. This idea is done using the vehicle scanning technique or indirect 
measurements proposed by Yang et al. in 2004 [1]. This study presents and 
implements the fundamental theory and conceptual ideas of the test vehicle used to 
detect the frequency messages of a tied-arch railway bridge. As a train connecting a 
test vehicle travels over the arch bridge at a constant speed, interesting study 
concerning the modal frequency detection of the VBI system will be conducted. 
 

Keywords: damage detection, hanger, suspended beam, vehicle-bridge interaction, 
vehicle-scanning method, vibration 
 
1  Introduction 
 
An arch with curved form may create a gentle skyline and promote architectural 
aesthetics for modern infrastructure. A through arch bridge with arch-ribs above the 
deck is one of typical types in arch bridge design. The use of vertical hangers to 
suspend a flexible deck of an arch bridge is not only easier to build and design in 
constructional deployment but also effective to provide additional elastic supports for 
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the deck. Thus, a thin section is often considered as bridge deck for an arch bridge, in 
which the flexible deck is suspended by the arch ribs through hanger systems.  
 
 

 
Fig. 1 Schematic of a tied-arch bridge and a train connected by a passing test vehicle 
 
 
As shown in Fig. 1, the following structural characteristics are drawn: 
1. A light-weight cross section of flexible decks not only saves structural materials 
but also reduces the self-weights transferred to the arch-ribs through hangers, which 
can offer an effective cost-down design in construction; 
2. A stiff arch-rib system can offer enough structural strength to suspend the flexible 
deck through hangers; and 
3. Deployment of suspended hangers to transfer the self-weight and traffic loads to 
the supporting arch-ribs. 
 

With these features listed above, the compressive arch ribs, tensile hangers and 
bending decks constitute a definite carrying system for an arch bridge so that the 
mechanical performance of structural materials for each of components can be 
developed effectively. Such a design requirement of strong-arch and flexible-deck 
challenge structural engineers to carry out traffic-induced vibrations of arch-bridge 
structures since traffic load-induced broken hangers would result in severe 
damages/collapse accidents of the flexible deck-slabs from sudden loss or 
redistribution of stress in the hanger system. This particular issue has attracted bridge 
engineers’ attention and interests to conduct the dynamic behaviors of the hanger 
system of arch bridges under traffics. According to the previous studies, the key 
factors leading to the hangers breaking can be attributed to: (1) accumulation of 
fatigue-damage by alternating-loads of traffics, (2) long-term traffic overloads 
induced fracture, (3) environmental corrosions and ductility loss of materials due to 
very cold temperature, (4) impact effects by road roughness or expansion joints due 
to heavy traffic loads. However, most of these studies are focused on the influence of 
structural materials or external loads on the hanger system. Few of them gave a 
satisfactory explanation why the vibration amplitudes of the short hangers at arch foot 
are amplified significantly in comparison with those hangers at middle span of the 
deck. Focusing on this topic, this paper starts from the analytical formulation of a 
parabolic arch under vertical loads to unveil how the arching action can affect the 
vibration modes of a suspended deck, from which the key parameters dominating the 
dynamic characteristics of vibration modes of the flexible deck are extracted. 
 

For analytical demonstrations, the free vibration analysis of various types of 
through arch bridges considering different restraint supports of arch-ribs are explored. 
With the present investigations, the arching action on the arch-ribs of tied-arch bridges 
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plays a key role in affecting the dynamic forces of hanger system and the dynamic 
behaviors of deck-slabs under the action of moving train loads.  
 
2. Problem formulation 
 
2.1 Fundamental of arch structures 
The primary objective of this paper is to investigate the dynamic effects of moving 
train loads on vibrations of tied-arch bridges by the FE approach, the arch rib is 
modeled as a parabolic arch and the deck as a uniform beam supported by hinged 
ends, as shown in the Fig 1. First, the arching action of a two-hinged parabolic arch 
under uniformly distributed vertical load is conducted analytically. Then the FE-based 
arch-beam element will be developed for dynamic response analysis of a single-span 
tied-arch bridge subject to moving trains. Finally, the free vibration analysis and train-
induced vibrations of a tied-arch bridge are respectively carried out for evaluating the 
dynamic response of critical short hangers located at the arch foot of a tied-arch bridge 
under a train moving with resonant speeds. 
 
2.2 Curved-beam based model for tied-arch bridges 
 
The basic feature of an arch is that it can sustain the self-weight and external loads in 
a compressive manner, i.e., without introducing any tensile force on the structure. 
Such a structural form is particularly suitable for building materials that are strong in 
resisting compressive, rather than tensile forces, including stone and concrete. With 
mechanical properties similar to the arch structures, a vertical curved beam can 
transfer the gravity loads through the bending-tension coupling effect, by which the 
material can be used in a more efficient manner than a straight beam. However, the 
coupling effect has made the deformation behaviors of curved beam structures much 
more complicated than structures composed of straight beams. 
 

Though some progress has been made in the past in the study of curved beam 
problems, the coupling behavior (bending-tension and bending-torsion) of curved 
beams remains a mathematical hindrance in the derivation of a consistent 
displacement (strain) field for the curved beam element aimed at avoiding the 
membrane locking problem. In the out-of-plane buckling analysis of curved beams, 
Yang and Kuo [2] have demonstrated that a curved beam can be simulated by a 
number of straight-beam elements through consideration of the equilibrium for 
structural joints connecting non-collinear members in the deformed configuration. As 
can be seen from the above review, there is an apparent lack of a simple and 
straightforward approach for formulating a curved beam element that is free of 
membrane locking in the elastic stiffness for linear analysis, and can duly take into 
account the effect of curvature on the geometric stiffness for buckling analysis. On 
the other hand, planar curved beams constitute a special class of structures in 
engineering applications, for which both the in-plane deformation and out-of-plane 
buckling behaviors have always been the concerns of structural designers. For the 
reasons stated above, a non-conventional structural approach will be proposed herein 
for deriving the planar curved beam element. For curved beams with small subtended 
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angles, the elastic stiffness matrix of the curved beam will be derived as the 
composition of two chordwise straight beam elements used to represent the curved 
beam. Based on the concept of rigid displacements, the geometric stiffness matrix of 
the curved beam will be derived by transforming the geometric stiffness matrix of the 
straight beam with identical nodal degrees from the rectangular coordinates to the 
curvilinear coordinates. To examine the applicability and accuracy of the curved beam 
element presented herein, four examples on linear static, buckling, and geometrically 
nonlinear analyses of curved beam structures will be studied. 

 

   
(a)                                                 (b) 

 
Fig. 2 Modeling of an arch structure.  

(a) FE modelling. (b) Modeling of a curved arch element 
 

 
2.2.1 Straight-beam based arch element 
 
In this section, a simple, non-conventional structural approach will be presented for 
formulation of the planar curved beam element, which can be regarded primarily as 
extensions of the theories for the straight-beam element concerning derivation of the 
elastic stiffness matrix and geometric stiffness matrix. The following are the 
assumptions adopted for the planar curved beam: 

(1) The material is elastic and homogeneous; 
(2) The cross section of the curved beam is uniform and doubly symmetric; 
(3) Every cross section remains rigid, i.e., undistorted, during deformation; 
(4) The length and radius of the curved beam are large in comparison with the 

cross-sectional dimensions of the beam; 
(5) The shearing deformation on the curved beam is negligible; and  
(6) Only concentrated loadings are allowed to act at the two ends of the curved 

beam element. 
 

 
Fig. 3  Nodal forces of a curved beam element. 
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2.2.2 Elastic stiffness matrix of planar curved beam element 
 
For analysis of a circular curved beam subjected to external loadings by the finite 
element method, it is reasonable to divide the curved beam into a number of curved 
beam elements, as shown in Fig. 2. To circumvent the problem associated with the 
selection of proper shape functions for treating the coupling effect of bending-
extension deformations, each planar curved beam element with a small subtended 
angle (= 2 ) will be replaced by two chordwise straight beam elements, as 
schematically depicted in Fig. 2(b). The curved beam element of concern is shown in 
Fig. 2 with a radius R and subtended angle 2 . The z-axis in Fig. 3 represents one of 
the principal axes of the cross section, and the x-axis is tangent to the curvilinear axis 
of the beam. Concerning derivation of the elastic stiffness matrix for describing the 
linear behavior, the curved beam element acb in Fig. 3 will be approximated by the 
two chordwise straight beam elements ac and cb, also named as beam elements i and 
j, respectively, which share a common auxiliary node c at the midpoint of the curved 
beam element. In addition, i  and j  represent the included angles of segments ac 

and cb, respectively, with respect to the chord ab of the curved element in the X-Z 
coordinate system shown in Fig. 2. The above procedure describe the derivation of 
the elastic stiffness matrix for the planar arch element with two nodes a and b based 
on the straight-beam element stiffness matrices is characterized by the fact that it is 
based purely on the consideration of structural geometry.  
 
 
 
2.2.3 Free vibrations of a tied-arch bridges 
 
A tied-arch bridge allows the elimination of horizontal forces at the abutments of arch-
ribs through internal ties installed in the bridge decks so that is can be constructed 
with less robust base and prefabricated off-site. On the other hand, an arch bridge 
needs enough strong arch ribs to suspend the flexible thin-deck through tensile 
hangers. For numerical computations, the single-span arch-bridge is modeled as a 
beam-like deck suspended by an arch-rib through vertical hangers with uniform 
interval (d), in which the arch rib is made of CFST cross section, the concrete deck is 
simplified as a simple beam and the structural damping ratio of 2% is considered for 
the following example. With the curved beam element presented, Table 1 plots the 
fundamental modes of a tied arch bridge. As can be seen, the first mode of all the 
flexible deck is of anti-symmetrical shape due to the first anti-symmetrical mode 
induced by the longitudinal bending vibrations of the arch rib (see Table 1). In 
contrast, the second vibration mode of the deck is of symmetry and strengthened by 
the arching action on the arch-rib so that its corresponding frequency becomes higher 
than the first anti-symmetrical one, as explained in previous section. 
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Tied-arch bridge

Anti-symmetrical modes  
(f1 =1.21Hz, f4 =3.93Hz)

Symmetrical modes  
(f2 =2.47Hz, f3 =3.39Hz) 

 
 
 

Table 1. Natural modes and frequencies of the tied-arch bridge 
 

 

 
 

Fig. 4 A coupled model of a VBI system 
 

 

3  Vehicle scanning technique  
 
To clarify the key factors for VSM from the dynamic response of a test vehicle moving 
on a simple beam, as shown in Fig. 4, the damping and contact roughness of the VBI 
system would be neglected in the following formulation. Then the governing 
equations of Eqs. (1) and (2) are approximated as 

 0 mu EIu p x vt      0 /t L v      (1) 

( , )
t

v v v v v t x vt
m u k u k u x t


        (2) 

Solving the differential equations with zero initial conditions to find the vertical 
displacement response (uv) and then feedback it to the vehicle equation of Eq. (2), one 
can find the quasi-response of the moving vehicle on the beam. Next, one can relate 
vehicle’s acceleration ( )vu t  to the contact-point acceleration response ( )Cu t  using 

the following derivatives,  
2

2 2

( )1
( ) ( ) v

C v
v

d u t
u t u t

dt
 

        (3) 

To carry out the digital computations of fast Fourier transform (FFT) for the 
discrete acceleration data recorded by the vehicle, the term 2 2/vd u dt  in Eq. (3) can 
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be discretized using the central difference scheme. Then Eq. (3) is rewritten in an 
alternative form as [3] 

  2

( ) 2 ( ) ( 2 )
( )

( )
v v v

C v
v

u t u t t u t t
u u t

t
     

   

   F F     (4) 

Here, [ ]F  is denoted as Fourier transform. Clearly, since the vehicle acceleration (

vu ) in Eq. (4) is made available, the spectral contact‐point acceleration [ ]CuF  can be 

calculated using Eq. (4). Such a monitoring technique called vehicle scanning method 
(VSM) was proposed by Yang et al. [3].  

 
4. Applications of VSM to tied-arch bridges 
 
From an engineering viewpoint, a bridge is usually designed to provide sufficient 
structural strength and safety for vehicles moving over it. By this requirement, we can 
assume the moving vehicle-induced vertical inertial force acting on the bridge is 
negligible and the bridge is subjected to only sequential moving static forces of traffic 
loadings. By solving the equation of motion of the bridge analytically, the dynamic 
response of the vehicle excited by the feedback bridge response can be computed. 
This study calls such an approach as a two-stage technique and the decoupled vehicle-
bridge system as quasi-VBI model. Obviously, the present two-stage technique is a 
simple and efficient way to analyze interaction dynamics of vehicle/bridge coupling 
system. For demonstration, the tied-arch bridge shown above is modeled by finite 
element method. The major components of the bridge modeled by finite elements are 
described as:  

(1)  The bridge deck is modeled as a number of beam-column elements; 
(2)  The arch is modeled by a number of beam-column elements with the axial and 

flexible rigidities; 
(3)  The suspended hanger is represented as a two-force tensile bar element. 

 
The vehicle-bridge interaction dynamic analysis will be carried out for the test 

vehicle moving on the bridge. Thus, we can detect the vertical vibration data of the 
bridge from the running test vehicle for identify the bridge frequencies using the 
contact-point response.  
 
 As indicated in Fig. 5, the present contact-point response analysis for VSM of 
vertical bridge frequencies is feasible using the test vehicle’s response collected from 
the vibration data of the cable stayed bridge in cross winds. 
 
5.  Conclusions 
 
Hangers are crucial load-bearing components of cable-supported bridges and provide 
elastic support to the suspended bridge deck. The dynamic behaviour of hangers has 
attracted the attention of many researchers during the past several years. Based on the 
Vehicle-Bridge Interaction (VBI) theory, a moving instrumented vehicle is designed 
as a dynamic information scanner to detect the damaged hangers of a suspended 
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simple beam. This article can be regraded as a preliminary study of modal detection 
of cable-supported arch bridge using VSM. A further study for detecting the damaged 
hangers (caused by fatigue or joint corrosions) of a cable-supported bridge will be 
carried out by applying the present VSM. 
 
 

 
(a) 

 
(b) 

Fig. 5 Frequency detection of the tied-arch bridge 
(a) Time history of acceleration response. (b) response spectrum of the test vehicle  
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