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Abstract

Machine learning techniques have been increasingly used for modeling of engineering
problems. In particular, physics informed neural networks (PINNs) have been shown
to be a promising approach for discretizing and solving partial differential equations.
However, PINNs are best suited for smooth function approximations and have some
difficulties dealing with discontinuities and rapidly changing gradients in the solu-
tion. Here, we propose a framework for the simulation of nucleation and propagation
of cracks under brittle fracture using a subdomain-based phase-field approach. By
subdividing the domain into smaller regions and considering an energy minimization
formulation, the discontinuous displacements and singular stress fields can be more
accurately represented compared to the residual-based formulation.
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1 Introduction

In recent years, scientific machine learning has emerged as an essential tool to address
domain specific challenges in computational mechanics and extract insights from sci-
entific datasets and governing partial differential equations (PDEs) through innovative
methodological solutions. The theory of employing a neural networks to solve an ini-
tial and a boundary value problem defined by a PDE was proposed as early as 1990’s
[12, 11]. However, this discovery remained theoretical due to the requirement of enor-
mous compute power. The latest resurrection of neural networks — the deep-learning
revolution — is the direct outcome of the modern GPUs that has turned the one-layer
networks of the 1960s and the two- to three-layer networks of the 1980s into the 10–,
15–, and even 50–layer networks of today. The advent of physics-informed neural
networks (PINNs) [16] served as the catalyst for this revolution for computational
mechanics engineers, where the hyperparameters of the DNN are optimized by min-
imizing the residual of the governing PDE, ensuring that the outputs of the network
will necessarily satisfy the physics of the problem. Shortly thereafter, a variant of
PINNs, the deep energy method [17], was proposed to solve the governing PDE in its
weak form. In [17], the authors showed that for approximating the growth of fracture
and to obtain the crack path, it is necessary to use the energy minimization form since
fracture is an energy-driven phenomenon.

Fracture modeling is a computationally expensive phenomenon as it demands a
very fine mesh to resolve the damage region. To design a computationally efficient
approach, the same group also proposed an adaptive refinement scheme within the
framework of the deep energy method to locally refine the domain along the path of
the growth of the crack [10]. To that end, another promising alternative can be the in-
tegration of domain decomposition methods with the energy minimization framework.
The basic idea behind domain decomposition technique is to divide the global domain
into subdomains that can be solved independently and then reconnected by interface
conditions. These approaches are naturally applicable to the solution of large-scale
problems; their goal is to significantly increase the computational efficiency of simu-
lations.

The developed framework employs phase field modeling approach, a popular con-
tinuous fracture modeling technique. The neural networks are trained on the governing
coupled PDE (variational form) of the phase field approach to encode the vector val-
ued elastic field and the scalar valued phase field based on the initial crack location,
material properties and the characteristic width of the crack. One significant advan-
tage of the proposed variational energy formulation is that it requires derivatives one
order lower than the conventional residual minimization approach, which results in
better computational efficiency. Additionally, we use Gauss quadrature points to eval-
uate the integrals, over a domain. To begin with, the computational domain is divided
into a number of elements and then, the quadrature points are generated within each
element, for an efficient integration of non-smooth functions like fracture.
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2 Methods

2.1 Phase-field based fracture modelling

In this section, we briefly put forth the phase field formulation for brittle fracture anal-
ysis. The integration of two fields, the vector-valued elastic field and the scalar-valued
phase field, is required to model fracture using the phase field approach. While crack
nucleation may be influenced by stress, crack propagation necessitates an increase in
the fracture energy or surface energy of a solid, Ψc [1]. As a result, the energy criteria
is used in the phase field approach to analyse the growth of fracture.

Let us begin with the linear elastic problem on an arbitrary body, Ω, with external
boundary ∂Ω. The displacement at each material point x is denoted by u(x). In
addition, we assume a small strain tensor, ϵ at each material point defined as,

ϵ(u) =
1

2

(
∇u+∇uT

)
. (1)

The displacement field satisfies the Dirichlet and Neumann boundary conditions. Con-
sidering the material is isotropic and is linearly elastic, the stored elastic energy, Ψc at
any material point in the body is described by the energy density function, Ψ0(ϵ) as:

Ψ0(ϵ) =
1

2
λtr(ϵ)2 + µtr(ϵ2), (2)

where tr(·) denotes the trace of the strain tensor and λ and µ are the Lamé constants.
The Cauchy stress tensor, σ, at any material point on the domain Ω can be computed
as:

σ = ∂ϵΨ0(ϵ) = λtr(ϵ)I + 2µϵ. (3)

The momentum-balance equation for the elastic field, considering an isotropic solid,
can be written as:

∇ · σ = f(x) in Ω,

u = u on ∂ΩD,

σ · n = tN on ∂ΩN ,

(4)

where the Dirichlet and Neumann boundaries are represented by ∂ΩD and ∂ΩN , re-
spectively, tN is the prescribed boundary force and u is the prescribed displacement.
The stored internal potential energy of the body, for homogeneous Neumann boundary
conditions, is given by:

Ψint(u) =

∫
Ω

Ψ0(ϵ) dx, (5)

and the external energy is given by,

Ψext(u) =

∫
Ω

f · u dx+

∫
∂ΩN

tN · u dγ, (6)

where f is the body force.
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The equilibrium equation for the elastic field for an isotropic model, considering the
evolution of crack, involves the degradation of the stiffness of the material around the
area of the crack by penalizing the Cauchy stress tensor, σ with a monotonically de-
creasing stress-degradation function, g(ϕ). A common form of the stress-degradation
function in the literature is [15]

g(ϕ) = (1− ϕ)2.

With evolving damage, only the tensile component of the principal stress degrades
while the compressive component remains invariant [14]. Therefore, in order to pre-
vent the growth of crack inside regions under compression, a tension-compression
split of Ψ0(ϵ) is considered. With evolving damage, g(ϕ) is applied only to the ten-
sile component of the principal strain. Consequently, due to the growth of fracture,
the anisotropic constitutive assumption for the degradation of the elastic strain energy,
can be stated as:

Ψe(ϵ) := g(ϕ)Ψ+
0 (ϵ) + Ψ−

0 (ϵ), (7)

where Ψ+
0 (ϵ) and Ψ−

0 (ϵ) denote the strain energies computed from the positive and
negative components of the principal strains, respectively.
The governing equation for the phase-field is written as [2, 6]:

Gc

l0
ϕ−Gcl0∇2ϕ = −g′(ϕ)H(x, t) on Ω, (8)

where Gc represents the critical energy release rate (property of material), H(x, t) is
a local strain-history function, ℓ0 is the length scale parameter that controls the width
of the diffusive region of the crack. The effect of l0 has been verified by a series of
numerical simulations [19, 18], demonstrating that the crack region has a larger width
with an increasing ℓ0 while the phase field represents a sharp crack topology when
ℓ0 → 0. The phase field is used to smear out the crack surface over the domain Ω.
In the regularized model, correspondingly, the phase field must satisfy the following
condition:

ϕ(x, t) =

{
0 the material is intact,
1 the material is completely cracked. (9)

The local strain-history functional, H(x, t) contains the maximum positive tensile
energy, Ψ+

0 in the history of deformation of the system [15] and is defined as:

H(x, t) = max
s∈[0,t]

Ψ+
0 (ϵ(x, s)). (10)

The strain-history function can also be used to initialize or nucleate the crack [14]. In
particular, we set the initial strain-history function as [4]:

H(x, 0) =

{
BGc

2ℓ0

(
1− 2d(x)

ℓ0

)
if d(x) ≤ ℓ0

2
,

0 otherwise.
(11)
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where d(x) is the distance from x to the crack tip, B is a scalar parameter controlling
the magnitude of the scalar history field and is computed as:

B(ϕ) =
1

1− ϕ
for ϕ < 1. (12)

The fracture energy, Ψc of the newly formed cracks is expressed as:

Ψc =

∫
Ω

(GcΓn(ϕ) + g(ϕ)H(x, t)) dΩ. (13)

Here, Γn(ϕ) represents the crack density functional and n is the order of the corre-
sponding phase field model. For the second-order phase field model, n = 2, while
for the fourth-order phase field model, n = 4. The fourth order phase model includes
higher-order derivatives of ϕ, leading to greater regularity in the exact solution of the
phase field. In this case the cracked surface can be captured more accurately and fewer
degrees of freedom are required to resolve the crack path relative to the second-order
model. For the second and fourth order phase field model the crack density function-
als, Γ are defined as [3]:

Γ2(ϕ) =
1

2ℓ0

∫
Ω

(
ϕ2 +

ℓ20
2
|∇ϕ|2

)
dΩ,

Γ4(ϕ) =
1

2ℓ0

∫
Ω

(
ϕ2 +

ℓ20
2
|∇ϕ|2 + ℓ40

16
|∆ϕ|2

)
dΩ.

(14)

In this work we study the growth of fracture employing the energy minimization ap-
proach. To that end, we solve the optimization problem defined as [5]:

Minimize : E = Ψe +Ψc,

constrained to : u = ū on ∂ΩD,

such that : Ψe =

∫
Ω

(
g(ϕ)Ψ+

0 +Ψ−
0

)
dΩ,

Ψc =

∫
Ω

GcΓn + g(ϕ)H(x, t) dΩ.

(15)

The homogeneous Neumann boundary conditions are automatically satisfied when the
variational energy principle is used.

2.2 Variational energy based neural networks

Suppose the computational domain Ω is partitioned into p subdomains {Ωs : s =
1, 2 . . . , p} such that Ω =

⋃p
s=1Ωs. By partitioning, we imply that the division is non

overlapping, and the subdomains intersect only on their common boundaries which is
also called as interface. To simplify the discussion, consider the linear elastic problem
defined in (4) as an example, where on a particular subdomain Ωs we have:

−∇ · σs(x) = f s(x) in Ωs, (16)
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where f s is the body force in the s-th subdomain, and σs is the Cauchy stress tensor
associated with the material point in the s-th domain. Each subdomain is constrained
by the continuity condition:

ui(x) = uj(x) on Γij, (17)

where Γij is the interface between the i-th and j-th subdomains, and ui and uj are
the displacements on Ωi and Ωj respectively. The above boundary conditions also
represent the interface transmission conditions between the neighbouring subdomains.
For each of these subdomains, a separate deep neural network (DNN) is deployed.

A DNN [7], NL : Rd 7→ Rp is a non linear function defined as concatenations of
affine maps with point-wise non linearities, in the form:

NL(x) = WLτL (. . . τ3 (W2τ2 (W1x+ β1) + β2) . . .) + βL (18)

where, Wi’s are weight matrices may not necessarily be square and βi’s are referred
as bias vectors. L is the depth (the number of layers) of the network and L ≥ 3. The
input vector is x and the output vector of any arbitrary ℓ-th layer is denoted by Nℓ(x)
in particular, N0(x) = x. The non-linear monotonic function τ is known as activation
function applied layer-wise to any vector, however the dimension of the input vector
may vary depending on layers. However, regardless of input dimension, the activation
function performs the same operations on all input entries. The activation function in
the final layer is linear.

The primary goal of fracture mechanics is to determine the crack path. In this work,
we have studied displacement-controlled fracture, i.e. this is growth of the crack by
applying a displacement increment until failure. In addition, we assumed a constant
displacement step, ∆u. The neural network is trained and the strain-history function
of each sub-domain is updated at each displacement increment in this configuration.
In the beginning, the network parameters are initialized using a Gaussian distribu-
tion with Xavier initialization technique [8]. Let us first use a DNN to represent the
displacement field, U s, and the phase-field, ϕs of the s-th subdomain, such that

(U s, ϕs) = Ns (xs; [Ws, βs]) . (19)

Each subdomain is discretised into ns
e elements, and we generate the Gauss points

within each element and their corresponding weights. The total variational energy is
calculated at the Gauss points to approximate the integral. The displacements and the
phase field at the common interfaces are assumed to be continuous. Therefore, for
solving the PDE as a whole, we defining the loss function separately for the interior
of each subdomain and the interfaces as follows:

Lint
s (W , βs) = Ψe(ϵ(Us), ϕs) + Ψc(Gc,xs)

Liface
ij (W , βs) =

W1

NΓij

NΓij∑
k=1

|ui(xk)− uj(xk)|2

+
W2

NΓij

NΓij∑
k=1

|ϕi(xk)− ϕj(xk)|2
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where NΓs represents the total training points scattered over its interfaces, respec-
tively. The interface condition endowed with the loss function plays an important
role for stitching the subdomains together. It ensures that the data information should
propagate among the neighbouring domains. A sufficient number of collocation points
needs to be generated on the interface leading to faster convergence of the algorithm.
In (20), Wi ∀ i = 1, 2 are penalizing parameters, which are chosen manually for
balancing each of the loss terms and also for faster convergence. From the viewpoint
of optimization it could be more sophisticated to multiply the constraints with suitable
penalty coefficients. A method for adaptively choosing these penalty parameters has
been proposed in [13].

3 Results

This numerical example is based on a unit square plate embedded with an eccentric
hole, as shown in Figure 1(a). The bottom boundary remains fixed. At the top bound-
ary, a quasi-static load is applied in the form of a prescribed displacement increment
ū. The material properties considered for this problem are: λ = 121.154 kN/mm2,
µ = 80.77 kN/mm2, Gc = 2.7 × 103 kN/mm. For this example, we have considered
l0 = 0.02. A displacement increment of 10−3 mm is applied at each incremental step.

(a) (b) (c)

Figure 1: (a) Geometrical setup and boundary conditions for the square plate with
eccentric hole test. All the units are in mm. (b) and (c) Distribution of training data
over four and eight subdomains, respectively.

# of # elements Integration Interface points
domains per subdomain points per element per subdomain

4 122 4 1600
8 82,142 4 1000

Table 1: Summary of the subdomain arrangements studied in the numerical example.

7



Figure 2: Crack growth in the square plate with eccentric hole, using the fourth-order
phase field model and 8 subdomains.

(a) (b)

Figure 3: Load displacement plots of square plate with eccentric hole. (a) 4 subdo-
mains, and (b) 8 subdomains.

In Table 1, the details of the experimental setup of 4 and 8 subdomains are pro-
vided. A 3-layers fully-connected neural networks with 50 neurons per hidden layer
with swish activation is employed. The final layer uses linear activation function.
The outputs for the elastic field are altered to exactly match the Dirichlet boundary
conditions, as follows:

u = xuθ,

v = y(y − 1)vθ + y∆u,
(20)

where u and v are the solutions of the elastic field in coordinate axes, and uθ and
vθ are the neural network approximations of the displacement field in x− and y−
axes. Figure 2 demonstrates the results of the fourth-order phase-field model obtained
using the proposed approach. The load-displacement curves for both the experiments
are shown in Figure 3. In the specimen 8 subdomains, we observe a sharper drop-off
in the load compared to the experiment with 4 subdomains.

4 Conclusion

In this work, we have proposed a domain decomposition approach for deep energy
method, that aims to accurately resolve the crack path employing the phase field mod-
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eling approach. The proposed approach is more efficient and accurate than its prede-
cessor [9, 10]. The proposed method can be used to solve any differential equation in
its weak form. This is accomplished by enforcing the residual continuity requirement
along the shared subdomain interfaces. For the numerical examples, we observe that
the results obtained using the proposed approach match closely with results from the
literature.
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