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Abstract 
 

Sound quality is an important measure of the sound performance of acoustic devices. 
However, multi-frequency calculations in sound quality optimization can lead to poor 
solvability of the optimization problem. Data-driven approach is an effective way to 
solve multi-frequency computing problems. However, as the acoustic device products 
are updated, the structure or environment will change. The original neural network 
model will no longer be applicable and the prediction accuracy will be severely 
reduced. The new optimization task requires the collection of new data samples and 
the training of new neural networks. The extensive data collection process and 
iterative optimization process further reduce the solvability of the sound quality 
optimization problem. For the sound quality optimization of acoustic devices, this 
paper proposes a data-driven acoustic-structural topology optimization design method 
that can quickly and accurately predict the acoustic frequency response and 
significantly improve the computational efficiency problem. Deep transfer learning is 
also introduced to achieve fast and accurate prediction of acoustic frequency response 
using a small amount of sample data in a new structure/environment. The main 
contributions of this paper are as follows: (1) A new agent model based on deep neural 
network (DNN) is proposed to replace the complex finite element model, combined 
with Movable Morphable Components (MMC) method with a small number of design 
variables to achieve sound quality optimization of acoustic devices. (2) Deep transfer 
learning is introduced for the DNN training, which realizes the rapid and accurate 
prediction of sound pressure frequency response in new tasks by using a small amount 
of sample data, and enhances the adaptability of DNN agent model in different 
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optimization tasks. (3) Numerical examples demonstrate that the proposed method 
can reduce the data dependence. In the multi-layer iterative optimization task, using 
small sample data for multiple transfer learning can achieve efficient optimization 
design and greatly reduce the design complexity. 
 

Keywords: topology optimization, acoustic-structural system, artificial neural 
network, transfer learning, MMC, sound quality 
 

1  Introduction 
In recent decades, acoustic performance of electronic devices has become a hot 

research topic. Sound quality, defined as the smooth output of sound with a 
sufficiently large sound pressure level (SPL) amplitude in the interested frequency 
band, is a very important acoustic indicator for electronic devices such as mobile 
phones and loudspeakers.  When it comes to the design of the sound quality of 
products, researchers are often faced with the problems caused by multi-frequency 
calculations. In addition, different design solutions often require the same 
computational challenges. The repetitive and tedious analysis and calculation process 
greatly affects the production and updating of products. Therefore, the need for fast 
and accurate real-time analysis and calculation results has become urgent for rapid 
innovation of electronic devices. 

 
With the expansion of the application of topology optimization in various 

industries, the problem of acoustic topology optimization design is gradually gaining 
widespread attention. Related studies on acoustic optimization can read in [1-5]. 
However, there are relatively few relevant studies dealing with multi-frequency 
computational problems in acoustic topology optimization work. In fact, it is generally 
necessary to consider the acoustic performance over a wide range of frequency bands 
when dealing with sound quality problems. Because of the frequency dependence, 
finite element models require the acoustic response to be calculated at each frequency. 
This results in time-consuming frequency sweeps. Worse still, the need for finite 
element calculations at each iteration step in the optimization problem adds to the 
tediousness of the calculations. An effective approach is to discretise the wider 
frequency band into a number of frequency points and perform finite element 
calculations. However, the cost of this approach is a loss of accuracy in the sound 
curve. 

 
The introduction of machine learning has become a proven solution to the above 

problem. In the field of topological optimization, relevant optimization techniques 
combined with machine learning have been gradually applied to different problems. 
Chandrasekhar et al. [6] considered a simple compliance minimization problem and 
achieved an optimized distribution of multiple materials under a total mass-constraint 
by means of an artificial neural network. White et al. [7] used neural network for 
multiscale topology optimization, where a gradient-based nonlinear topological 
optimization method is adopted for macroscopic optimization, while the elastic 
response of microscale metamaterial is calculated by neural network agent model 
instead of finite element model. Abueidda et al. [8]  predicted the optimized structure 



3 
 

of topology optimization design problem with material and geometric nonlinearities 
by using a convolutional neural network model. Lei et al. [9] used machine learning  
technique for real-time structural topology optimization in an explicit framework 
based on Movable Morphable Components (MMC). 

 
Machine learning can effectively solve the problem of multi-frequency 

computation in acoustic problems. However, in the design process, different structural 
design schemes need to be verified and compared. Although the structure is only 
slightly changed, the neural network used in the original scheme may not be suitable 
for the data of new structure, and the predictive performance may be significantly 
reduced. To obtain accurate acoustic response of each structure, the time-consuming 
data collection process and neural network training process need to be re-performed. 

 
The goal of transfer learning is to use a small amount of data to learn relevant 

knowledge from the source task to help the target task create a high-performance 
model. Some research has been carried out in related fields. In order to cope with 
complex aerospace design tasks, Min et al. [10] studied transfer learning, multi-task 
learning technology and multi-view learning technology in data-driven agent model. 
Zhang et al. [11] proposed a hierarchical adaptive prediction method based on deep 
transfer learning to predict the remaining service life of bearings in the multi-stage 
degradation process. Aiming at the optimization task of heat source layout with 
different boundary conditions, Zhao et al. [12] introduced deep transfer learning to 
quickly predict temperature field layout. 

 
In this paper, a new agent model based on deep learning and deep transfer 

learning is developed for the sound quality optimization problem, which enables fast 
and accurate prediction of optimized acoustic structures for different optimization 
tasks using small sample data. The main contributions of this paper are as follows: 

 
1) A new deep learning-based agent model is proposed to replace the complex 

finite element model in multi-frequency acoustic optimization calculations to 
achieve fast and accurate prediction of the optimized structure for sound 
quality problems. 

 

2) DNN training introduces deep transfer learning, which increases the 
adaptability of the DNN agent model in different situations by exploiting 
information between different sound quality optimization tasks. 

 

3) Some numerical arithmetic examples demonstrate that the proposed method 
can reduce data dependence and achieve fast optimized design of the final task 
through multiple sample transfer learning in a multi-layer optimization task. 

 
The rest of the paper is organised as follows. Section 2 introduces the 

mathematical model of sound quality optimization and some details of deep learning 
method. Section 3 gives some numerical examples to verify the effectiveness of the 
proposed method. Finally, some conclusions are drawn in section 4. 
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2  Methods 
 

2.1 Optimization problem 
 

In this work, the goal of sound quality optimization is to maximize the SPL 
amplitude in the interested frequency band and improve the uniformity of the SPL 
frequency response by changing the topology of the acoustic design domain. The 
general approach is to find the optimized structure in the design domain that provides 
the best transmission channel for the sound waves to achieve a certain acoustic 
performance (as shown in Figure 1).  

 

 
Figure 1: The basic idea of acoustic topology optimization problem. 

 
Under the MMC method [13], the optimization problem can be formulated as 

follows: 
find:  𝒅 ൌ ሺ𝒅ଵ

ୃ, … , 𝒅ே
ୃ ሻୃ,   

min:   𝐼 ൌ 𝐼ሺ𝒅ሻ ,   
s. t.  𝐊ሺ𝒅ሻ𝑼 ൌ 𝑭,   

𝑉ሺ𝒅ሻ ൑ 𝛾𝐷௔,   
𝒅 ⊂ 𝒰𝒅,   

𝑼 ൌ 𝑼ഥ, on 𝛤𝑼, ሺ1ሻ 
 

where 𝒅௜, 𝑖 ൌ 1, … , 𝑁 represents the design variable vector of the 𝑖-th component and 
𝑁 is the total number of the components; 𝒰𝒅 is the admissible set allowed that 𝒅 
belongs to. The symbol 𝐊 is the global stiffness matrix of the acoustic–mechanical 
problem; 𝑼 is the structural response that includes mechanical and acoustic fields, 
respectively; 𝑭 is the load vector. 𝑉ሺ𝒅ሻ is the volume occupied by the components, 
𝐷௔ is the given design domain  and 𝛾 is the volume fraction between 0 and 1. 

 

In this paper, the objective function 𝐼 of the SPL maximization problem can be 
expressed as 

𝐼ଵ ൌ െ‖𝑝௜‖ଶ, ∀𝑖 ∈ ሾ𝑓௟, 𝑓௨ሿ, ሺ2ሻ 
 

where 𝑝௜ represents the frequency response obtained at frequency 𝑖 dropping in the 
frequency band ሾ𝑓௟, 𝑓௨ሿ. While in the sound quality optimization problem, the SPL 
response in the whole frequency band should be considered. Thus, the corresponding 
objective functional is written as 
 

𝐼ଶ ൌ 𝜂ฮ𝐼ଵ
௜ , 𝐼ଵ

௠௔௫ฮ
ଶ

െ 𝐼ଵ
௠௔௫, ∀𝑖 ∈ ሾ𝑓௟, 𝑓௨ሿ, ሺ3ሻ 

Sound
waves

Components 

Design domain

Sound
waves

Design domain
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where 𝜂 is a coefficient to control the magnitude of the uniformity of the frequency 
response in the band. 𝐼ଵ

௠௔௫ can be expressed as 

𝐼ଵ
௠௔௫ ൌ ቆ෍ ൫𝐼ଵ

௜൯
௣௙ೠ

௜ୀ௙೗

ቇ

ଵ
௣

, ሺ4ሻ 

where 𝑝 is a penalty factor. In this work, 𝑝 ൌ 6. 
 

2.2 DNN for the prediction of sound pressure  
 

The sound quality optimization needs to solve the sound pressure of each 
frequency through the calculation of sweep frequency, which is a huge computational 
process. Therefore, it is difficult to use traditional numerical method directly in the 
optimization process. In this paper, an agent model based on DNN and deep transfer 
learning is proposed for rapid and accurate prediction of sound pressure in different 
optimization tasks.  

 
A typical deep neural network is divided into three layers: the input layer, the 

hidden layer and the output layer. In this paper, the design variables in MMC method 
and the frequency are used as the input layer, the sound pressure is used as the output 
layer. Through training, the DNN can quickly and accurately predict the output 
corresponding to a series of inputs. However, the prediction performance of the DNN 
decreases when there are some small changes in boundary conditions such as 
dimensions of the structure or design domain locations. In order to avoid re-collecting 
data to train a new DNN, this work introduces a deep transfer learning model to learn 
the knowledge of the original neural network with a small amount of sample data in 
order to enable the new DNN to be applied to new tasks. The basic idea is shown in 
Figure 2. 
 

 
Figure 2: The basic idea of optimization task based on deep learning and deep 

transfer learning. 
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Source optimization task
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3  Results 
 

3.1 Finite element model 
 

In order to verify the feasibility of the proposed method in acoustic optimization 
problems, the two-dimensional (2D) model shown in Figure 3 is chosen as the finite 
element model for the optimization problem. The left side of the model is the 
structural domain with plastic as the material and the right side is the acoustic domain 
with air as the acoustic medium. Sizes of structure and boundary conditions are shown 
in Figure 3. The reference point A is located at the centre of the right boundary of the 
acoustic domain. In this paper, the model dimension for the SPL maximization 
problem is millimetre, while the sound quality optimization problem is centimetre. 
 

 
Figure 3: A simple 2D acoustic structure. 

 
3.2 Numerical examples 
 

For the SPL maximization problem, the selected optimization frequency is 
7000Hz.  To obtain the DNN, 200,000 sets of data were used for training and 40,000 
sets for testing.  Figure 4(a) shows the initial distribution of the components (material 
is aluminium) and the optimized predicted structure. The relative error between the 
predicted value and the real value is less than 2.5%. Figure 4(b) shows the distribution 
of the SPL field for the original design and the optimized structure. Figure 4(c) shows 
the SPL curves in 6000-10000Hz of the point A. It can be noted that the SPL increases 
from 102.73dB to 106.50dB. Time to optimize 200 iteration steps using DNN is 230 
seconds (while time to optimize 500 iteration steps using FEM is 1128 seconds). 
 

As shown in Figure 5, the three boundary conditions of the 2D model is slightly 
modified, and the DNN was gradually fine-tuned with 4000 sets of data at a time. 
Figure 6(a) shows the optimized structure by the new DNN predictions after transfer 
learning. Figure 6(b) shows the distribution of the SPL field for the original design 
and the optimized structure after fine-tuning. Figure 6(c) shows the new SPL curves 
of the point A. It can be seen that the SPL has increased from 101.77dB to 104.99dB. 
The time used to collect small sample data and fine-tune the DNN for three times is 
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about 6.5 hours, while the time required to re-collect 240,000 sets of data and train 
the DNN is over 36 hours. The efficiency of the calculation has been greatly improved. 

 
 

 
Figure 4: (a) The initial distribution of the components and the optimized structure; 

(b) Distribution of SPL (dB) of the 2D acoustic structure at 𝑓=7000Hz: original 
design (left) and optimized design (right); (c) SPL curves of the 2D acoustic 

structure ([6000Hz, 10000Hz]). 
 

 
Figure 5: The adjusted two-dimensional acoustic structure. 
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Figure 6: (a) The optimized structure; (b) Distribution of SPL (dB) of the 2D 

acoustic structure at 𝑓=7000Hz: original design (up) and optimized design (down); 
(c) SPL curves of the 2D acoustic structure ([6000Hz, 10000Hz]) 

 
For the sound quality optimization problem, the model still uses the 2D structure 

shown in Figure 3 and the selected frequency band is 3300-3700Hz. To obtain the 
DNN, 150,000 sets of data were used for training and 30,000 sets for testing. The 
coefficient 𝜂 is 0.01. Figure 7(a) shows the initial distribution of the components and 
the optimized predicted structure. Figure 7(b) shows the SPL curves in 3300-3700Hz 
of the point A. It can be noted that the optimized SPL curve is noticeably smoother 
and the sound quality has been greatly improved. In this example, the time consumed 
for sound quality optimization (200 iteration steps) with 41 frequency points is 310 
seconds (the time using the FEM method with 5 frequency points is 1110 seconds). 
 

 
Figure 7: (a) The initial distribution of the components and the optimized structure; 

(b) SPL curves of the original structure and the optimized structure ([3000Hz, 
4000Hz]) 
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As shown in Figure 8, only the location of the design domain is fine-tuned and 

4000 data is used to learn the knowledge of the original DNN. The coefficient 𝜂 is 
0.001. Figure 8 shows the optimized predicted structure. Figure 8 shows the SPL 
curves in 3300-3700Hz of the point A. It can be noted that the SPL curve becomes 
very smooth, and the optimized structure can still be predicted by using the new DNN 
to obtain the best sound quality after the design domain location is slightly adjusted. 
In sound quality problem, due to the randomness of the frequency, the stiffness matrix 
of each set of data needs to be recalculated, data collection is an extremely time-
consuming (over 14 days) effort. Therefore, it is very advantageous to use transfer 
learning with small sample data based on the source DNN. 
 

 
Figure 8: The adjusted 2D acoustic structure. 

 

 
Figure 9: (a) The initial distribution of the components and the optimized structure; 

(b) SPL curves of the original structure and the optimized structure ([3000Hz, 
4000Hz]) 
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4  Conclusions and Contributions 
 

In this paper, a new agent model based on deep learning and deep transfer 
learning is proposed to quickly and accurately predict the acoustic pressure frequency 
response of acoustic structures in different environments, solving the multi-frequency 
calculation difficulty and the time cost problem caused by the calculation of 
homogeneous and heterogeneous structures in the sound quality optimization 
problem. In the sound quality optimization, the high-precision DNN replaces the finite 
element model and significantly improves the computational efficiency in the sound 
pressure frequency response calculation and optimization iterations. Under the deep 
transfer learning framework, the DNN can be quickly applied to the corresponding 
homogeneous heterogeneous structures by transfer learning from small sample data. 
In the face of structural designs with large variations, the DNN can still have high 
prediction accuracy after multiple stepwise migration learning. The numerical 
examples given verify that the DNN based on deep transfer learning works well in 
different acoustic optimization tasks, which provides a strong technical guarantee for 
the design and optimization of acoustic devices. The fast and accurate prediction 
performance of the proposed method can provide a sufficient number of validation 
solutions in a short period of time for tasks that would otherwise require significant 
time costs, which is very promising for applications in engineering production. 
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