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Abstract

This paper presents multi-objective optimisation of a laminated cylinder’s dynamic
behaviour and cost through stacking sequence, geometry, and appropriate materials
choice. The optimized dynamic parameters are the width of a band in the frequency
spectrum free of natural frequencies and the cost of applied materials. The multi-
objective procedure involves mode shape identification, genetic algorithm-based op-
timisation, and deep neural networks-based surrogate model. The novel elements
proposed are a detailed analysis of the number of initial finite element method calls
necessary to train the neural network-based surrogate model, a study concerning dif-
ferent surrogate model schemes (one network or a network ensemble), error function
applied during surrogate model training, and the application of high-fidelity (and time-
consuming) or low-fidelity (but very fast) finite element models.
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1 Introduction

In many engineering fields, composite materials are used more often, e.g., in air-
craft, mechanical, environmental, or civil engineering [1]. Composites are applied
as auxiliary or primary structural materials, and they have a very desired, high ratio of
strength to weight and high durability. Most composite cylindrical shells are used un-
der dynamic loading; unfortunately, their dynamic behaviour has not yet been widely
investigated. Understanding this behaviour may be crucial in applying composite ma-
terials in structural engineering [2]. Another phenomenon that may be analyzed is
buckling [3], associated with a process where a structure suddenly changes shape.
Triggered by a varying external load, this configuration change often happens in a
catastrophic way—named bifurcation buckling—which is predicted by employing an
eigenvalue analysis.

The optimisation is one of the crucial stages in the design process. Optimising
static and/or dynamic parameters of a composite structure (e.g., fundamental natu-
ral frequency, mass, buckling force, material cost) requires repeatedly calculating the
value of the so-called objective function describing the distance of parameters be-
ing optimized from their desired values. Real-life engineering problems are typically
characterized by multiple objectives conflicting with each other. For this reason, an
appropriate trade-off between these objective functions should be made using multi-
objective optimisation (MOO). The computing power demand and time consumption
can be reduced if zero-order optimisation algorithms are applied (no derivatives of
the objective functions are necessary) and modern surrogate models of a considered
structure are used. Applying nature-inspired metaheuristic algorithms, such as ge-
netic algorithms (GAs), supported by neural networks (NNs) can meet these assump-
tions [4–7].

The properties of a composite structure are optimized through the changes in the
values of basic topological parameters (lamination parameters), through the changes
in geometry, and through the appropriate selection of materials for consecutive lay-
ers. The proposed optimisation procedure involves nature-inspired optimisation algo-
rithms [3] such as genetic algorithms [8, 9], and deep neural networks (DNNs) [7, 10]
as a tool to replace time-consuming finite element method (FEM) calculations in dy-
namic parameters prediction. This work primarily aims to build a multi-objective op-
timisation framework (for maximising the frequency spectrum gaps around arbitrarily
selected excitation frequencies [11] and the cost of applied materials) for composite
circular shells.

The new elements proposed in the work are a detailed analysis of the number of
initial FE calls necessary to train the DNN-based surrogate model, a study concerning
different metamodel schemes (one DNN or a network ensemble), error function ap-
plied during DNN training, and the application of high-fidelity (and time-consuming)
or low-fidelity (but very fast) FE models. However, this work presents a selection of
results related to two issues: the additional re-training of the DNN surrogate model
and the automatic vibration mode shape identification application.
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2 The investigated models and optimisation procedure

2.1 The finite element and surrogate models

The investigated structure is a shell of the revolution created by rotating a hyperbola
connecting three points. Moving the middle of these tree points leads to obtaining
shells of different geometry (with different depths). The length of the hyperboloid
(along the revolution axis) equals L = 6.0 m, the upper radius Rup = 61.03 cm,
the lower radius Rdown = 1.3Rup, the depth of the hyperboloid, d, varies between
d = 30 cm and d = 110 cm. The thickness of the shell is equal to t = 1.6 cm and
is divided into eight composite layers of equal thickness. The end of the shell under
analysis (with Rdown = 1.3Rup = 79.34 cm) is fixed — all its displacements are
blocked.

Each shell layer can be made of a different composite material, with a different di-
rection of the composite reinforcement fibres. Three materials are taken into account;
two of them are carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced
polymer (GFRP), and their material properties and costs are taken from [12]. The
material costs are unitless since they show only the mutual relation of the costs of
different materials. The third material is theoretical (and is here called TFRP), with
the properties and cost calculated as the average of CFRP and GFRP. This material
was introduced to make the optimisation problem (considered in the later part of the
article) more complex, considering more options than only two distinctly different
materials. All properties of the applied materials are summarized in Table 1.

Ea Eb Ec νab νac νbc Gab Gac Gbc ρ Cost
GPa — GPa kg/m3 —

CFRP 120 8 8 0.014 0.028 0.028 5 5 3 1536 10.20
TFTP 80 6 6 0.020 0.036 0.036 4 4 3 1428 5.78
GFRP 40 4 4 0.026 0.044 0.028 3 3 3 1320 1.36

Table 1: Material properties of three considered composite materials.

The second model is described by seventeen varying parameters subject to further
optimisation. The variable parameters are as follows:

• d, depth of the structure; 30 cm ≤ d ≤ 110 cm,

• material of each of the eight composite layers that make up the structure shell;
µi, i = 1, 2, . . . , 8, µi ∈ 1, 2, 3,

• lamination angle of the eight composite layers; λi, i = 1, 2, . . . , 8, −90◦ ≤ λi ≤
+90◦ (with a step of 5◦).

The finite element model comprises square-like, multilayered shell 4-node MITC4
elements (first-order shear theory). Each layer corresponds to one composite layer
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with possibly different material properties and lamination angles. The base size of
the elements called h, is chosen to be almost equal to h = 5 cm (it differs slightly in
the circumferential and longitudinal directions; moreover, it also differs for different
locations along the axis of the whole shell).

During the optimisation of the dynamic properties of the investigated structure,
the number of calculations of dynamic properties corresponding to different values
of the model parameters reaches at least several hundred or, more probably, several
thousand. Applying the FEM model leads to highly time-consuming numerical sim-
ulations. A neural network-based surrogate model (or metamodel) is proposed to
overcome this problem.

The task of the surrogate model is to immediately estimate, with satisfactory ac-
curacy, the values of a selected number of the natural frequencies corresponding to
particular values of the investigated model parameters. DNN is applied as a surrogate
model. Various DNN-based surrogate models are considered, among them surrogate
models that assess 11 natural frequencies corresponding to 11 carefully selected mode
shapes.

Supervised learning is applied to create the networks building surrogate model;
preparing a set of examples and presenting them to the networks is necessary to teach
the network to reproduce the relationship between input and output data. It has to
be firmly stated that a crucial point in DNN-based surrogate model application is a
constant control of numerical effort (CPU time consumption); the overall CPU time
consumed during a necessary number of FE calls—including the generation of exam-
ples for DNN-based model learning—has to be significantly smaller than CPU time
consumption in case the surrogate model is not applied.
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Figure 1: The analysis of time-consumption and the accuracy of multi-fidelity models;
h is the size of one finite element.

The high-fidelity model is applied to build the set of patterns used to teach the
surrogate model and for the final verification of the results obtained. The low-fidelity
model is primarily used for preliminary verification of the results to reject the solutions
the surrogate model erroneously indicates. The low-fidelity model with the element
size twice as high as in the fine model is four times less time-consuming and gives
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results with 16 times higher error (see Figure 1); however, the decrease in accuracy is
not as important as the decrease in time consumption while the model is applied for
preliminary verification.

2.2 The optimisation scheme

The main optimisation is preceded by creating a surrogate model (based on DNN),
which predicts—for the given set of model parameters—the structure’s frequency
spectrum. The optimisation scheme is presented in Figure 2. The loop shown in
Figure 2 depicts the possibility of tuning the surrogate model every time the subse-
quent results are obtained and is called curriculum learning (CL). In what follows,
CL0 means that no CL loop was applied, CLx means that x loops were made.

DNN: initial training
pattern set:      

Mode shapes
identification:      

FEM: random 
examples for DNN 

training:     

GA+DNN: 
optimisation

Optimal 
solution

Stop criteria

FEM: verification
possible 

solutions:       

i=i+1

i=0

Mode shapes identification
pattern set:           

DNN: training, pattern set

Figure 2: The applied optimisation scheme.

3 The results

Several simulations were carried out, verifying the results obtained from calculations
with different assumptions. Figure 3 presents the comparison of the Pareto fronts
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obtained with one CL loop (called CL1) or without CL loops (CL0). Each of the four
graphs in Figure 3 presents the results obtained in maximising a frequency gap around
a different possible excitation frequency (50 Hz, 60 Hz, 70 Hz, and 80 Hz) together
with minimisation of material costs. The advantage of applying even one CL loop is
visible in each case.
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Figure 3: The Pareto optimal fronts obtained for CL0 and CL1 cases, surrogate model
is trained using 1000 examples (1000 FE calls are necessary before the op-
timisation is fired).

Figure 4 compares the Pareto fronts obtained with prior identification of mode
shapes and the application of natural frequencies corresponding to the selected mode
shapes or without the identification of mode shapes and the application of the first
eleven natural frequencies.

Each of the four graphs in Figure 4 presents again the results obtained in maximis-
ing a frequency gap around a different possible excitation frequency (50 Hz, 60 Hz,
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Figure 4: The Pareto optimal fronts obtained with (CL0 4000) and without mode
shapes identification (CL0 4000 sort).

70 Hz, and 80 Hz), with or without mode shapes identification. Performance improve-
ment when using mode shapes identification is evident.

4 Concluding remarks

The paper presents the optimisation of the lamination angles in subsequent composite
layers, the optimisation of basic geometrical parameters, and the selection of the com-
posite materials for the subsequent composite layers. The two competing objective
functions are

• the maximisation of the frequency gap around a possible excitation frequency,

• the minimisation of material costs.
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The analysis of the obtained results leads to the following conclusions:

• the application of curriculum learning loop improves the results in every tested
case, the improvement is greater than in the case of application of a comparably
higher number of examples (generated using FE calculations),

• the identification of mode shapes and application of the natural frequencies cor-
responding to identified mode shapes proved its usability, also in multi-objective
optimisation cases,

• the application of FE models of different fidelity level (high- and low-fidelity
models) leads to a significant reduction of numerical effort necessary to opti-
mize the investigated structure.
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[11] B. Miller, L. Ziemiański, ”Maximization of Eigenfrequency Gaps in a Compos-
ite Cylindrical Shell Using Genetic Algorithms and Neural Networks”, Applied
Sciences-Basel, 9, 2754, 2019.

[12] M. Abouhamze, M. Shakeri, ”Flexural performance and cost efficiency of car-
bon/basalt/glass hybrid FRP composite laminates”, Thin-Walled Structures, 142,
516-531, 2019.

9




