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Abstract 
 

A machine-learning assisted topology optimization approach is proposed for 
structural design with structural gene inheritance. This work establishes a novel 
framework to systematically integrate structural topology optimization with 
subjective human design preferences. To embed the structural gene into the design, 
neural style transfer technique is adopted to measure and generate the prior knowledge 
from a reference image with the concerned structural gene (such as biological 
characteristic, artistic flavor and manufacturing requirement, etc.). By using different 
convolutional layers in the VGG-19 model-based CNN, both the style and content of 
the structural gene can be constructed from low to high levels of abstraction. The 
measured knowledge can then be integrated into pixel-based topology optimization as 
a formal similarity constraint. Both 2D and 3D problems are solved to illustrate the 
effectiveness of the proposed approach where the inheritance of the structural gene 
can be achieved in a systematic manner. 
 

Keywords: topology optimization, structural gene, bio-inspired structure, machine-
learning, neural style transfer, VGG-19 model. 
 

1  Introduction 
 

In traditional topology optimization-based approaches, only structural properties 
can be considered in the optimization process. Aesthetic side, is often handled 
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manually by trial and error or post-processing. As discussed in [1], there is an urgent 
need for the sound integration of artistry and function in the final design. The second 
issue is that it is difficult for the topology optimization to inherit prior design 
knowledge, which could make it possible to achieve desired innovative structural 
forms. For example, the style of nature structures, such as trees, are usually considered 
to have excellent ornamental forms. Obviously, taking these styles into topology 
optimization can expand the design space to explore more design options. However, 
most research studies can only achieve the replication of existing nature structures or 
using biomimetic initial structure with post-processing treatment to improve the 
structure. Therefore, integrating the treatment into the optimization problem is highly 
required. Last but not least, the optimization result lacks diversity. It means once the 
optimization model is defined, the optimal architectural structure is also determined. 
Therefore, the designer has to go through the process of trial-corrections (such as 
changing the boundary conditions of the problem) to obtain satisfactory results. 
Obviously, this treatment has great limitations and is unreliable.  

 
To improve the details of structural features in design, machine learning is widely 

sought after recently. Similar to the shape matching and object recognition idea [2,3], 
Li [4] and Han [5] pointed out that artistic shapes can be recognized by machine 
learning through style transfer methods. One of the very first attempts can be found 
in [6], where ImageNet classification with deep convolutional neural networks (CNN) 
is proposed. Then, the rapid development of deep learning [7–9] technique provides 
inspiration for topology optimization with artistic flavor. With the use of deep learning 
technique, the graphical features of neural networks provide a possibility to define the 
measurement of the similarity between the reference images and the optimized 
structures. Unlike the artistic shape recognition, neural style transfer uses images 
derived from CNN to display high-level information. This idea can separate and 
recombine the content and style of the images [10]. In [11] Vulimiri et al. tried, with 
use of a pre-trained neural network, to achieve the combination of reference image 
and optimized structure. In their study, they showed how to preliminarily quantify the 
desired geometric style of the optimized design. Furthermore, texture guided approach 
[12–14] also has the capability of combining the graphic features with topology 
optimization. Excellent results of synthesized textural structures have been also 
proposed [13,14] However, the approaches mainly focus on the concrete geometric 
similarity. When the similarity requirement for abstract structural style or form is 
concerned, the approaches could face some challenges.  

 
In the present work, a machine-learning assisted topology optimization approach 

is proposed for structural design with structural gene inheritance. In this approach the 
structural gene, including structural feature, structural shape and even structure type 
and form can all be taken into consideration in the optimization. The approach is 
developed under the SIMP (solid isotropic material with penalization) framework 
[15]. Unlike the traditional approaches where trial techniques or hypothesis initial 
structures are adopted for promoting structures to produce structural gene, the 
machine-learning technique is introduced to define and measure the structural gene 
mathematically. In this work, the structural gene can be controlled as a formal 
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similarity constraint which makes explicit control of the structural gene possible in 
topology optimization. Since the structural topology and geometry are described by a 
set of pixels in SIMP, analytical sensitivity of the similarity constraint can also be 
easily obtained. With the use of this approach, architectural structures can be designed 
with relatively good structural performance blended with various structural gene. 
 

2  Methods 
 

In the present work, the style transfer technique [10] is adopted to measure the style 
of a reference image. Actually, neural style transfer is a significant development in 
the field of deep-learning-driven image modification. The aim of style transfer is to 
blend a content image and a reference image together. It consists of two steps, i.e., 
extracting the style of a reference image and importing it into a target image while 
preserving the style and content. Obviously, the style extraction process, which 
measures a pattern from feature, texture, shape, form and style aspects, can be used to 
define the structural gene. 

 
Generally, the difference of a target structure and a reference pattern can be 

measured by function 𝐿ௗ௜௙௙ expressed as: 
𝐿ௗ௜௙௙ሺ𝒙, 𝒂ሻ ൌ 𝐿௦௧௬௟௘ሺ𝒙, 𝒂ሻ ൅  𝐿௖௢௡௧௘௡௧ሺ𝒙, 𝒂ሻ ൅ 𝐿௧௩ሺ𝒙ሻ,                 ሺ1𝑎ሻ 

where 

𝐿௦௧௬௟௘ሺ𝒙, 𝒂ሻ ൌ ෍ 𝑤௦
௟𝐸௦

௅

௟ୀଵ

,                                            ሺ1𝑏ሻ 
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௟ୀଵ
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𝐺௠௡
௟ ሺ𝒙, 𝑙ሻ ൌ ෍ 𝐹௠௞

௟ 𝐹௡௞
௟

௞
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𝐴௠௡
௟ ሺ𝒂, 𝑙ሻ ൌ ෍ 𝑆௠௞

௟ 𝑆௡௞
௟

௞

.                                           ሺ1𝑖ሻ 

In Equation (1), the vectors 𝒂 and 𝒙 denote the data associated with the reference 
image and the optimized structure (target image), respectively. They are composed of 
𝑅௖, 𝐺௖, and 𝐵௖, which represent the optical primary colors. The symbol 𝑙 represents 
the number of the layer of the network (total number 𝐿). 𝐿௦௧௬௟௘ and 𝐿௖௢௡௧௘௡௧ are the 
functions that calculate the discrepancies of style and content between the reference 
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pattern and the optimized structure, respectively. Here, the style represents the 
abstract pattern features while the content represents the concrete pattern features. The 
two functions have the ability to process an image and compute the mathematical 
description of its style and content. 𝐿௧௩ represents the total variation loss. It plays a 
role to enforce the spatial smoothness of the produced images and avoiding overly 
pixelated results. The symbols 𝑤௦ , 𝑤௖  and 𝑤௧௩ are the weight coefficients. The 
symbol 𝐸௦ሺ𝒙, 𝒂, 𝑙ሻ is defined as the style contribution of the 𝑙-th convolutional layer 
to the total loss; 𝐸௖  and 𝐸௧௩  are the content contribution and total variation 
contribution, respectively. The filters with size of 3 ൈ 3 ൈ 𝐶 are also applied to the 
convolutional layers in the adopted network. So, each layer can be seen as a nonlinear 
filter bank, whose activations in response to an image form a set of feature maps. The 
symbol 𝐶 is the number of total channels, that is, in RGB color images, 𝐶 ൌ 3; 𝑁௟ is 
the number of the distinct filters, which means that there are 𝑁௟ feature maps whose 
vectorized size is 𝑀௟ in the 𝑙-th layer; 𝐆௟ and 𝐀௟ are the gram matrixes which calculate 
the inner product (𝐺௠௡

௟  and 𝐴௠௡
௟ ) of the 𝑚-th and 𝑛-th feature maps in the 𝑙-th layer 

(𝑚, 𝑛 ∈ 𝑁௟); these feature maps are stored in matrixes 𝐅௟, 𝐒௟ ∈ ℛே೗ൈெ೗ , where 𝐹௠௞
௟  

and 𝑆௠௞
௟  are the activation of the 𝑚-th filter at position 𝑘 ∈ 𝑀௟ in the 𝑙-th layer. The 

corresponding detail expressions of 𝐅௟  and 𝐒௟  are provided in the subsequent 
subsection.  

 
Since the goal is to optimize various structures that exhibit excellent mechanical 

performance and simultaneously possess certain artistic content and style associating 
with a reference image, the topology optimization formulations for 2D and 3D cases 
can be expressed as follows. 
For 2D case, the similarity constraint can be introduced into the SIMP-based 
optimization formulation in a natural way. This is because both the artistic style in 
deep-learning and structural topology in SIMP are described by pixels in a similar 
way. Thus, Equation (2) can be restated as follows: 
 

           Find    𝝆ୃ, 𝒖                           
Minimize    𝐼 ൌ 𝒇ୃ𝒖                

S. t.                                                                          
𝐊ሺ𝝆ሻ𝒖 ൌ 𝒇,            

𝑔ଵሺ𝝆ሻ ൌ 𝐿ௗ௜௙௙ሺ𝝆; 𝒂ሻ ൑ 𝜀, 

𝑔ଶ ൌ ෍ 𝜌௘

௡

௘ୀଵ

𝑣௘ ൑ 𝑉ത, 

𝒖 ൌ 𝒖ഥ, on  Γ௨, 
𝜌௜ ∈ ሾ0,1ሿ ∀ 𝑖 ∈ Ω,                                                     ሺ2ሻ 

 
where 𝜀 is a constant to control the similarity; 𝑛 is the total numer of elements and 𝑉ത  
is the upper bound of the volume of available solid material. It is worth noting that the 
density field 𝝆  should be replaced by  𝝆෥ ൌ 𝐓 ൈ 𝝆ୃ  in the calculation of 𝑔ଵ . The 
symbol 𝝆෥ represents the image data (composed of optical primary colors) converted 
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from the grayscale described by the densities of the optimized structure, where 𝐓 
denotes the conversion matrix to extend the dimension of 𝝆.   
 
3  Results 
 

An example is explored in this section to demonstrate the effectiveness of the 
proposed approach in structural design with structural gene inheritance. For the 
performance testing of the numerical approach, compliance minimization problem for 
both 2D and 3D structures are considered. All used data are chosen as dimensionless, 
that is, the Young’s modulus of material is 𝐸 ൌ 1.0 and Poisson’s ratio is 𝜈 ൌ 0.3. If 

not otherwise specified, the upper bound of the similarity constraint is set to 𝜀 ൌ ଵ

ଷ
𝜀଴, 

where 𝜀଴ is the difference in the structural gene between the initial structure (pure gray 
structure) and the reference image in Figure 2d-e (the smaller the value of 𝜀, the more 
similar of the style and contents of the two images). Additionally, only Conv2_1 and 
Conv3_1 in 𝐿௦௧௬௟௘ and Conv5_2 in  𝐿௖௢௡௧௘௡௧ are active for the calculation of 𝑔ଵ in the 
present work (i.e., there are 16 layers in the neural network). Under this circumstance, 
only 𝑤௦

େ୭୬୴ଶ_ଵ,େ୭୬୴ଷ_ଵ  and 𝑤௖
େ୭୬୴ହ_ଶ  are nonzero weight coefficients. The total 

variation loss 𝑤௧௩  is set to be 𝑤௧௩ ൌ min൫𝑤௦
େ୭୬୴ଶ_ଵ,େ୭୬୴ଷ_ଵ, 𝑤௖

େ୭୬୴ହ_ଶ൯ /10. 
Furthermore, the method of moving asymptotes (MMA) is adopted for solving the 
optimized solutions of problems. All examples are solved with use of a computer with 
8 cores 2.30 GHz Intel Core i7 – 11800H CPU and NVIDIA GeForce GTX 3080 
Laptop GPU whose CUDA cores is 6144 with 16 GB memory. 

 
In this section, a tall high-rise building topology optimization example shown in 

Figure 1 is examined to investigate the capability of the proposed method for topology 
optimization with structural gene. The design domain is a 1 ൈ 6 rectangle discretized 
by a 200 ൈ 1200 finite element mesh. The outer frame is defined as undesignable 
region as indicated in Figure 1. The graded distribution loads are imposed on the left 
and right sides. The bottom side of the design domain is clamped. The constraint of 
available solid material is set to 𝑔ଶ ൑ 0.7|𝐷|. The pure compliance result without 
similarity constraint is given in Figure 2a. The corresponding value of structural 
compliance is 𝐼 ൌ 212.029. Some crossed beams can be observed in the structure. 
Since the available solid material is relatively high, the bottom region is almost 
completely filled with solid material. Closed to the top region, the distribution of 
material becomes sparse and only several thin beams can be found. This time, Figure 
2d-e are appointed as the references to be associated with topology optimization. 
Figure 2d is a nature structure, i.e., the microstructure of bamboo. The heterogeneous 
microstructure is often considered of having good mechanical properties, such as good 
tensile and flexural strength. If the tall high-rise building is designed inspired by 
bamboo, besides the increase in the complexity of the design, the improvement in anti-
seismic property is also possible to be improved. In Figure 2e, a typical Baroque 
pattern of waves, which is deemed to have highly decorative and theatrical style, is 
described. If the Baroque style can be integrated into the building topology 
optimization, the obtained design may be more decorated and dramatic. We also hope 
to find elements of Renaissance architecture (the basic elements in Baroque style) in 
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the final design. Inspired by the previous example, 𝐿௦௧௬௟௘ሺ𝒙, 𝒂ሻ  is adopted as 
similarity constraint directly (this treatment may increase the solution space of the 
optimization problem).  

 
 
Then, the topology optimization is carried out with considering structural gene 

using similarity constraint. Figure 2b-c shows the corresponding optimized structures 
with structural gene (𝐼 ൌ 216.003 and 𝐼 ൌ 216.910, respectively). In both results, 
the supporting beams closed to the left and right sides are very strong to resist the 
bending loads. However, some regions originally filled with pure solid material are 
replaced by very complicated lattice patterns. In Figure 2b, the voids existing in the 
structure are almost in circular shape, which are consistent with the microstructure of 
bamboo. Due to the existence of image style (i.e. 𝐿௦௧௬௟௘ሺ𝒙, 𝒂ሻ) term in the similarity 
constraint, the circular voids are not evenly distributed throughout the structure. They 
keep the trend of graded decrease from bottom to top. In Figure 2c, quite different 
structural topology can be observed. The inside region is filled with reticulated 
structures, whose features are very similar to the wave pattern. In the optimization 
result, some strong beams are generated in the high strain energy regions to produce 
excellent structural stiffness as main loading paths (the locations of these beams are 
also consistent with these in Figure 2a). In other regions where relatively low strain 
energy exists, the original strong beams are replaced by tiny beams in wave shape. It 
is worth noting that even though the sizes and shapes of these beams are affected by 
the style of Figure 2e, the distribution and form of the beams still conform to the 
mechanics principle. It can be observed that apart from the pure mechanical design in 
Figure 2a, the expected structural gene are clearly reflected in the optimization results. 

 
4  Conclusions and Contributions 
 

In the present work, a novel topology optimization approach is proposed for 
structural design with structural gene inheritance. To achieve this purpose, the 
structural gene is defined as a formal similarity constraint under the SIMP framework. 
Machine-learning technique is adopted to measure the structural gene of a reference 
image in constraint calculation. Unlike the post-processing treatments, the structural 
gene can be controlled in the optimization process in an explicit way. Therefore, the 
concerned structural gene can be produced along with reasonably excellent structural 
performance. Compared with the existing approaches, the distinctive feature of the 
present machine learning assisted approach is that it has the capability of generating 
both abstract style and concrete content, rather than simple copy of the geometrical 
patterns. The provided numerical examples illustrate the fact that the proposed 
approach has the capability of designing structure with desired structural gene, which 
may create innovative structural forms and increase the diversity of the design. 
Actually, the same approach can also be extended to topology optimization for nature 
inspired design, which may bring some unanticipated performance with use of 
traditional topology optimization formulation. Corresponding research and results 
will be reported in the future. 
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Figure 1: A tall high-rise building example. 
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Figure 2: The optimized design of the tall high-rise building with similarity 
constraint. (a) The pure compliance optimized design of the tall high-rise building. 

(b) The optimized design referring to the style of Figure 2(d); (c) The optimized 
design referring to the style of Figure 2(e); (d) Microstructure of bamboo; (e) 

Baroque pattern of waves. 

ሺ𝑎ሻ ሺ𝑏ሻ ሺ𝑐ሻ

ሺ𝑑ሻ ሺ𝑒ሻ
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