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Abstract

This work examines the problem of oscillating boundaries in density-based topology
optimisation algorithms based on B-spline hyper-surfaces. We compare recent devel-
opments in the different approaches proposed in the literature and attempt to find a
relatively easy and robust method to obtain smooth optimal solutions by minimising
the number of design variables and the associated computational effort.
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1 Introduction

The finite element method (FEM) and computer-aided design (CAD) software had
a huge impact on multiple engineering fields and allowed for the developpement of
different tools for the deisgn of optimal mechanical structures. On the one-hand, the
FEM allows to compute the mechanical response of a structure, by solving a finite
element model defined on a computational mesh approximating the prescribed domain
of the structure. On the other hand, CAD provides powerful tools to describe the
geometry and topology of such a domain, among which, the explicit representation of
geometrical features based on Non-Uniform Rational Basis Spline (NURBS) entities,
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which are the most used entities in CAD. NURBS entities have been introduced to
overcome certain limitation of Basis Spline (B-spline) and Bézier entities, such as, the
exact representation of quadratic curves and surfaces, [1].

Topology optimisation (TO) has benefitted greatly from both FEM and CAD, and
turned into a widespread research field which allowed for the developement of dif-
ferent TO methods. The most popular ones are density-based methods [2, 3] and the
level-set method (LSM) [4, 5]. They allow to determine the optimal distribution of a
material, within a precribed domain, to minimise a given objectif function while sat-
isfying a set of design requirements, and have widely proven to be an efficient tool for
the preleminary design of structures in several industrial sectors.

Probably the most popular density-based method is the one making use of the solid
isotropic material with penalisation (SIMP) approach to penalise the elasticity matrix
in the framework of structural analysis. In the context of density-based algorithms,
the topology of the structure is described through a pseudo-density field ρ(x) ∈ [0, 1]
which directly affects the stiffness tensor of the finite element model. This facilitates
the implementation of the method for descent algorithms. Nevertheless, other issues
must be carefully studied when working with density-based TO algorithms, such as
the checkerboard effect, mesh dependency of the optimised topology, local minima,
etc. [6] . These problems are mainly due to the dependency of the pseudo-density field
ρ(x) on the finite elements mesh, and the last 20 years have seen the development of
different approaches to tackle these issues, such as the use of smooth filters [7, 8],
relaxation of the optimisation problem [9, 3], or the post-processing of the optimal
solution[10, 11].

Among the most recent developments in the field of density-based TO algorithms,
one can find the NURBS-density-based TO method [12, 13, 14, 15, 16, 17]. This ap-
proach can be seen as a hybrid method combining the main features of density-based
TO algorithm and the LSM: its main advantage consists of separating the pseudo-
density field from the finite elements mesh, which is now, described by a purely geo-
metric entity. More precisely, a NURBS entity of dimension D + 1 is used as a topo-
logical descriptor for a TO problem of dimension D. The NURBS formalism allows
some nice features such as the local support and the convex hull property [1], and in
analogy with the LSM, NURBS entities allow access to the topology boundary during
iterations and are CAD-compatible. Thus, a theoretical/numerical framework for TO
based on NURBS entities has been developped and applied to different mechanical
problems with varying complexities both in 2D and 3D [13, 18, 12].

Of course, NURBS-density-based TO algorithm comes at a price which is an in-
crease of the design variables when NURBS hyper-surfaces are used as topological de-
scriptor. Indeed, a NURBS surface is defined as the weighted sum of a tensor product
of the NURBS basis functions at each control point (CP). Thus, the design variables
vector contains both the density value at CPs and the associated weights. This can be
computationally expensive when considering 3D problems or multiple optimisation
parameters. An easy solution is to take a constant unit weight, which corresponds
of using B-splines entities instead of NURBS ones, this approach however yields the
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well-known problem of oscillating boundaries [14].
To this purpose, this paper investigates the problem of oscillating boundaries when

using B-spline entities as topological descriptor and its possible solutions. Specifi-
cally, this paper aims to provide an answer to the following research question: is it
possible to use B-spline entities to describe the topology of the continuum and find a
way to reduce/avoid wavy boundaries, or are NURBS entities the best choice in terms
of topological descriptor? If we can find a solution to reduce/eliminate the bound-
ary oscillations, B-spline entities would be the best choice as they represent the best
compromise between saving design variables (thus reducing the computational effort)
and accuracy of results. In this context, three different approaches are proposed in the
literature which are all based on filtering. The first approach consists in reformulating
the optimisation problem in a way to ensure a non-oscillatory density field through
the use of linear filters such as Shepard’s filter [19]. The second one is to apply the
filter on the gradient of the merit function, which the authors in [17] apply to obtain
smooth boundaries in the context of multi-resolution topology optimisation (MTOP)
. Finally, the third approach consists in performing a dedicated post-processing of the
optimised solution to filter out noise from the boundaries through image-processing
techniques [20]. The remainder of the paper is as follows. Section 2 briefly recalls
the fundamentals of NURBS hyper-surfaces and states the TO problem. Section 3
introduces two well-known linear filtering techniques and their adaptation to density-
based TO algorithms. Section 4 presents filtering methods to smooth the gradient of
the response functions involved in the problem formulation. Section 5 recalls the fun-
damental concepts at the basis of the surface fitting method presented in [21, 22, 23],
which is adapted in this paper to approximate the optimised topology by filtering out
the boundary oscillations. Section 6 gives some preliminary numerical results, whilst
section 7 draws some concluding remarks and prospects.

2 Problem formulation with non-uniform rational ba-
sis spline hyper-surfaces

A detailed description of the mathematical background of the NURBS-based SIMP
method is available in [13, 12]. Let us just recall that a NURBS hyper-surface is a
polynomial-based function, defined as h : RN → RD , where N and D are respec-
tively the dimensions of the parametric space, and the co-domain. The formula of a
NURBS hyper-surface reads :

h(ξ1, . . . , ξN) :=

n1∑
i1=0

· · ·
nN∑

iN=0

Ri1...iN (x1, . . . , xN)ξi1,...,iN , (1)

where

Ri1...iN (x1, . . . , xN) =
ωi1,...,iN

∏N
k=1Nik,pk(xk)∑n1

j1=0 · · ·
∑nN

jN=0

[
ωj1,...,jN

∏N
k=1Njk,pk(xk)

] (2)
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are the piece-wise rational basis functions.Nik,pk(xk) are the standard Bernstein’s
polynomials calculated recursively as discussed in [1], xk ∈ [0, 1] is the kth dimen-
sionless coordinate, and ξi1,...,iN ∈ RD is the vector containing the coordinates of the
generic CP. Finally, (nj +1) and pj are respectively the number of CPs and the degree
of the basis functions along the parametric direction xj .

We consider the classical problem of minimising the compliance of a 2D structure.
Let D = {(X1, X2) ∈ R2|X1 ∈ [0, a1], X2 ∈ [0, a2]} be a compact subset defined in
the Cartesian orthogonal frame O(X1, X2), where a1, and a2 are the reference lengths
of the domain. We seek the optimal distribution of a given isotropic heterogeneous
material, with a prescribed volume V , in the design domain D in order to minimise
the compliance of the structure. The equilibrium problem for a linear elastic structure
reads: [

K KBC

KT
BC K̃

]{
u

uBC

}
=

{
f
r

}
, (3)

where u and uBC are the unknown and imposed vectors of generalised displacements.
f is the vector of applied nodal forces and r contains the nodal reactions on nodes
where Dirichlet’s boundary conditions are imposed. K,KBC and K̃ are the stiffness
matrices of the FE model after applying boundary conditions. A pseudo-density field
ρ is used to represent the distribution of the material, such that ρ(X1, X2) = 0 means
absence of material, whilst ρ(X1, X2) = 1 implies a completely dense base material.
For a 2D problem, a 3D NURBS surface is used, whose third coordinate is the pseudo-
density field that reads:

ρ(x1, x2) =

nCP∑
τ=0

Rτ (x1, x2)ρτ ∈ [0, 1], (4)

where ncp = (n1 + 1)(n2 + 1) is the number of CPs and τ is the linear index defined
by :

τ := 1 + i1 + i2(n1 + 1), ∀i1 = 0, . . . , n1, i2 = 0, . . . , n2.

In Eq. (4), the dimensionless coordinate is defined as xj =
Xj

aj
. In the context of

the SIMP approach, the pseudo-density field is used to penalise the element stiffness
matrix and area as follows:

M =
Ne∑
e=1

LT
eMρ

α
eKe0LeM , A =

Ne∑
e=1

ρeAe, (5)

where ρe is the pseudo-density computed at the centroid of the generic element, Ae

is the element area, Ke0 is the generic stiffness matrix appearing in Eq. (3) and LeM

the connectivity matrix associated with matrix M = K, K̃,KBC. The generalised
compliance of the structure is defined as [24]:

C(ρ̃(ξ̃1, ξ̃2)) = fTu− uT
BCr, (6)
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where ξ̃T1 = {ρ0, ρ1, . . . ρnCP
} ∈ [ρLB, ρUB]

nCP and ξ̃T2 = {ω0, . . . , ωnCP
} ∈ [ωLB, ωUB]

nCP

are the design variables vectors collecting the CPs densities and weights, respectively,
and ρ̃ is the mapping defined by :

ρ̃ : (ξ̃1, ξ̃2) ∈ [ρLB, ρUB]
nCP × [ωLB, ωUB]

nCP 7→ ρ ∈ L
(
D, [ρLB, ρUB]

)
.

Thus, TO problem of compliance minimisation under area constraint reads:

min
ξ̃1,ξ̃2

C(ρ̃(ξ̃1, ξ̃2))

∥Cref∥
,

subject to:
A(ρe)

Aref

≤ γ,

ξ̃1 ∈ [ρLB, ρUB]
nCP , ξ̃2 ∈ [ωLB, ωUB]

nCP ,

where ρLB = 10−3, ρUB = 1, ωLB = 0.5 and ωUB = 10 are the bounds on the
design variables, whilst Cref andAref are the reference values for compliance and area,
respectively, and γ is the area fraction defined by the user. The formal expression of
the gradient of the generalised compliance and of the area can be found in [24].

3 Filtering of the density field

The first approach for handling the wavy boundary problem is to apply a linear filter
to the density distribution function. The idea is to smooth the value of the control
point ρτ based on the values of its neighboring control points ρi, i ∈ Ωτ , where
Ωτ ⊂ {1, . . . , nCP}. The quality of the filter highly depends on the choice of the
neighborhood Ωτ ; a common choice is based on the distance between the considered
CP and those falling in Ωτ as is the case for Shepard’s filter used in [19], where

Ωτ = {ρi | d(ρi, ρτ ) < r, r > 0}.

Another choice is based on windows, where a constant number nw of CPs is taken
around ρτ ; this choice of neighborhood points is characteristic of least-squares filters,
such as Savitsky-Golay filters [25]. Thus the filtered pseudo-density field described
through a B-spline surface can be written as

ρ̂(x1, x2) =

nCP∑
τ=0

Rτ (x1, x2)ρ̂τ ∈ [ρLB, ρUB],

=

nCP∑
τ=0

∑
i∈Ωτ

Rτ (x1, x2)ψ(ρi)ρi,

(7)

where ψ(ρi) ∈ R is a general filtering weight function.
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4 Smoothing of gradient

The second approach is the filtering of the sensitivity data ∂C
∂ξτ

. Smoothing the sensi-
tivity data is a widely known practice which allows to avoid numerical instabilities in
optimisation algorithms. However, there is no general rule for an efficient smoothing
of the sensitivity data which ensures good convergence, since the smoothing filters pa-
rameters are often case-dependent. Here we use a traditional linear filter as discussed
in [17], where the smooth sensitivity is defined as

∂C

∂ξτ
=

1

ξτ
∑

i∈Ωτ
Hiτ

∑
i∈Ωτ

Hiτξi
∂C

∂ξi
, (8)

where Hiτ = max(0, rmin − d(ρi, ρτ )), and rmin is the filter radius.

5 Post-processing of the boundary

The third and final approach is the post-processing of the computed optimal density
distribution to get rid of oscillating boundary. This can be done by traditional meth-
ods of boundary filtering, or more sophisticated approaches like smooth surface fitting
[22] where NURBS entities are used to fit complex shape with noisy boundary by
employing an original formulation involving the second-order partial derivative of the
NURBS entity to avoid oscillating boundary. Other surface reconstruction techniques,
well known in the field of meshing, such as the screened Poisson surface reconstruc-
tion [23], can be used to reconstruct a smooth version of the tessellation. Unlike the
above approaches, the post-processing of the boundary is not case-dependent and can
be done very efficiently and often produces results that have a similar performance to
the computed optimal ”wavy” structure.

6 Preliminary results

For our numerical results, we consider the standard benchmark of a cantilever plater
of height H = 200 mm, width W = 320 mm, thickness t = 2 mm. The Young’s
modulus of the isotropic linear elastic material is E = 1MPa, and Poisson ratio is
ν = 0.3. The FE static analysis is solved on a mesh of 160 × 100 plane elements (4
nodes and 2 degrees of freedom per node) with a zero Dirichlet boundary condition
along the left edge X1 = 0 and is subject to an applied force fT = (0,−1) on the
bottom right corner X = (W, 0). The pseudo-density field is described by B-spline
surface of degrees p = q = 2 and with a number of CPs along each parametric
direction set as (n1 + 1) = 140, and (n2 + 1) = 85. All the simulations presented in
this section have been carried out by using the globally-convergent method of moving
asymptotes [26] with the default value of the parameters tuning its behaviour.
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C = 57.12N C = 55.77N

Figure 1: Optimised densities using B-spline entities (left), and NURBS entities
(right).

6.1 Unfiltered optimised topologies

Figure 1 shows the computed optimal densities using both B-Spline and NURBS en-
tities. As stated earlier, the problem of oscillating boundary is exagerated on the B-
spline solution, whilst the NURBS one is able to provide an optimised topology with
smoother boundary. In agreement with results presented in [12], the NURBS solution
is characterised by better performances in terms of generalised compliance but at the
price of a higher number of design variables (twice the number of design variables of
the B-spline solution).

6.2 Influence of the linear filtering technique on the optimised
topology

In agreement to the statements in [17], filtering the density gives bad results as shown
in Fig 2. This is mainly due to the coupling introduced among the densities evaluated
at the CPs due to the nature of applied filters, which makes convergence very difficult.
In this context, the least-squares filters like Savitzky-Golay are the worst choice when
filtering densities since they require a minimal window of 9 CPs.

6.3 Influence of the gradient smoothing on the optimised topology

As expected, the smoothing of the sensitivity data, is a case-dependent approach. One
must choose the radius of the filter, B-spline degrees and number of CPs carefully in
order to converge. For our test case we used a uniform distribution of CPs, and we
set δ = max( a1

n1+1
, a2
n2+1

) and rmin = cδ. As shown in Fig. 3, the optimised topology
has been determined by using different values of the coefficient c. From the analysis
of these results, one can infer that the higher is the smoothing radius the smoother
the boundary. However, as the radius increases, convergence problems arise and the
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C = 63.33N C = 522.04N

Figure 2: Computed final filtered densities using shepard’s filter [19] (left), and
Savitzky-Golay filter [25] (right).

C = 57.56N C = 78.04N

Figure 3: Computed final filtered densities using a smooth gradient with radius rmin =
1.5δ (left), and rmin = 2δ (right)

optimised solution is characterised by meaningless intermediate values of the pseudo-
density.

7 Conclusions

The use of filters during the optimisation process does not seem to be a good approach
for topology optimization using B-spline density-based method. Indeed, both B-spline
and NURBS entities are characterised by a local support property, which constitutes
a kind of filter that strongly reduces mesh-dependency of the optmised topology and
checker-board effect. Therefore adding another layer of filtering makes convergence
very difficult. It is the authors opinion that the post-processing of the computed densi-
ties is a better strategy, which is not case-dependent unlike the use of filters. We shall
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present comparison results for post-processing strategies along with a comparison of
their performances during the presentation.
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