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Abstract

A comprehensive database was developed for stress concentration factors (SCF) in
offshore tubular T-joints through a code that enables finite element (FE) modeling of
a joint using graded mesh generation, load and boundary conditions for a range of
geometric parameters. A mesh sensitivity study was conducted and the SCF compu-
tations were validated against existing experimental results. A parametric study was
conducted to identify the best samples for training a neural network (NN) model.
Bayesian optimization by Gaussian Process and Expected Improvement functions
were employed to tune the hyper-parameters. A Sobol sampler was used to gener-
ate an initial set of points in the search space with the hyper-parameters including
learning rate, batch size, number of layers, neurons, activation function and dropout.
The optimization process generated a set of trial points using a balanced Sobol sam-
pler, which was evaluated by an objective function that monitored validation loss to
obtain the best hyper-parameters. Back-propagation based on a NN model was trained
and tested to predict the SCF of T-joints by using the best hyper-parameters obtained
from the model. SCF results were compared with parametric equations of Det Norske
Veritas (DNV) and Lloyds Register (LR). Advantages of the proposed method have
been highlighted.
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1 Introduction

Offshore jacket platforms are space frames built with welded tubular steel with vertical
legs that are held by a transverse bracing system. Main cause of structural failures of
offshore jacket platform has been attributed to fatigue damage. Computation of SCF
is a key element in fatigue assessment. Empirical equations are often used to compute
SCF, which are mostly on the safe side. Thus, FE analysis is recommended to justify
extending structure’s life.

Toprac and Beale [1] developed the empirical SCF equations for tubular joints
by employing a small pool of steel joint data. Due to exorbitant expense of testing
scaled steel models, Efthymiou [2] developed empirical equations using 150 cylindri-
cal 3-dimensional FE models with PMBSHELL elements. LR developed SCF para-
metric formulae for simple tubular joints based on an experimental database of mea-
sured SCFs for steel joints and full-scale acrylic models. DNV and LR are the most
widely used empirical equations in the offshore industry. Santacruz and Mikkelsen [3]
showed that SCFs from FE models with solid elements are lower than those derived
using shell elements. Empirical equations were created using FE models which either
did not contain a weld geometry or modelled the geometry in a simplified form. Hec-
tors and Waele [4] proved that geometry of weld significantly impacts magnitude of
SCF, pattern of SCF distribution and the projected location of failure. They suggested
that SCF can be ascertained by modelling solid joints with inclusion of the weld ge-
ometry. Effective service life of offshore structures can be well depicted with adoption
of more precise SCF.

Choo and Qian [5] proposed NN based estimation of SCF in steel tubular X-joints
based on 100 ABAQUS-FE models database with single hidden layer of 11 neurons.
Xiao et.al [6] developed NN model to predict SCF in Concrete Filled Steel Tubular
Y-joints. The proposed ground breaking approach integrates Sobol sequence sam-
pling and Bayesian optimization, revolutionizing hyper-parameter optimization for
NNs and enabling the discovery of optimal configurations that minimize loss. Cheng
and Druzdzel [7] demonstrated that Sobol sequences outperformed Halton and Faure
sequences in sampling methods for Bayesian networks as the number of dimensions
increased. Bratley and Fox [8] examined the proposal by Antonov and Saleev [9] for
an optimized variant of the Sobol sequence using Gray code. Utilization of Gray code
in the Sobol sequence improved its performance, making it a valuable tool for ap-
plications requiring high-quality quasi-random number generation. Maass et al. [10]
explored the influence of Sobol sequences on optimization of Back Propagation Neu-
ral Network (BPNN) architectures by including number of layers and nodes.

Potential of neural networks with the support of sufficient and accurate FE database
can overcome limitations of empirical equations. In order to assist offshore design
engineers to forecast accurate fatigue life, NN models for SCF prediction in tubular T-
joints based on a sizable FE database are developed by incorporating Sobol sequence
sampling and Bayesian optimization.
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2 Mesh Sensitivity Study and FEA Validation

Tubular T-joints can be subjected to axial forces, in-plane bending, and out-of-plane
bending. Typical tubular T-joint with non-dimensional geometrical parameters and
loading mode is presented in Figure 1. Nominal stresses are the stresses in the struc-
tures under external loads that do not take into account the intricacy of the joint in-
tersection. These stresses are primarily due to the bending and axial loads acting on
tubular members. Hot-spot stresses occur due to deformation of tubular wall under
applied external loads to maintain continuity at the intersection of chord and brace
members. These stresses can be significant and may lead to joint fatigue failure. Posi-
tions of hot spot stress of tubular joints are in the way of weld toes on the sides of chord
and brace. Hot spot locations considered for fatigue life assessment are chord-crown,
brace-crown, chord-saddle and brace-saddle. Stresses in the extrapolation region are
considered for computation of SCF. It is mentioned in DNV RP C203 [11] that hot
spot stress can be obtained by extrapolation of stresses determined from FE analysis
at specified locations from the weld toe.

Figure 1: Geometric Parameters and Mode of Loading.

Twenty-noded three-dimensional solid elements are used to simulate tubular joints
including the weld geometry. Modulus of Elasticity and Poisson’s ratio of steel are
considered to be 200 GPa and 0.3, respectively. Because there exists symmetry in
material, size, shape, orientation, and boundary conditions; one-fourth of the geom-
etry is modelled using the Ansys Parametric Design Languauge (APDL) code. Weld
geometry is modelled based on requirements suggested by American Welding Society
(AWS) D1.1 standard [12]. A finer mesh is implemented for numerical simulations
in areas surrounding the weld region, while a coarser mesh is used for regions farther
away. Displacements in the X,Y, and Z directions at all nodes pertaining to chord
end were arrested for simulating the fixed-fixed boundary for all loading conditions.
Unit pressure is applied at the brace-end for axial loading. By applying appropriate
stresses at the associated nodes, linear stress variation with zero stress at the neutral
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axis is simulated. Unit pressure is also applied at the extreme point for both in-plane
and out-of-plane bending. Planes of symmetric and asymmetric boundary conditions
are used to simplify FE analysis. Mesh sensitivity is conducted to identify optimum
mesh controls to save computation time in creating the database without affecting
accuracy of results. A mesh convergence study is performed on a 700 mm chord di-
ameter joint, as an example, with mean non-dimensional geometric parameters. Key
mesh controls for study are: number of elements across thickness of chord and brace
members. Three models are studied with one, two and three elements each across the
thickness of the chord and brace member. SCF at all the locations for three loadings
are plotted in Figure 2. It can be observed from the plot that the second model is apt
for the FE analysis because the SCFs become stable from second to third model at all
locations for all loading.
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Figure 2: Mesh Convergence Plot for all Loadings.

Experimental results which are available in the existing literature are identified and
FE analysis is performed to find SCF of selected tubular T- joints as mentioned in
Table 1. SCF at all locations for the out-of-plane bending obtained are compared with
experimental results, which are presented in Figure 3. Variation of SCF between FE
results and the test results can be attributed to a discrepancy in the location used to
extrapolate the stress in the test. Further, differences in the weld profile might exist
between the FEA code and the test model. Atteya and Mikkelsen [14] found SCFs
determined through FE analysis to be dependent on various factors, including mesh
size, element type, method used to compute SCF and the modelled weld profile. It is
verified from comparison of FE based SCF results with experimental results that the
code developed by the authors for FE modelling and analysis of steel tubular T-joints
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Model
No.

Code/
Literature

D
(mm) α β γ τ

1 T23/1 (OTH) [13] 168 10.5 0.53 13.4 0.86
2 T24/3 (OTH) [13] 168 10 0.53 13.3 0.51
3 T204C (OTH) [13] 457 10.2 0.25 14.3 0.4
4 Santacruz [3] 250 12 0.5 14 1

Table 1: Details of Validation Models for Out-of-plane Bending.

can predict the SCF very well. The FEA based database is generated using a full fac-
torial combination of geometric parameters, covering the entire parameter range. For
cross-validation of the neural network model, a randomly generated data-set is created,
with count equivalent to 20% of the total number of combinations in the full factorial
design. Sobol Sequence Sampling Method and Bayesian Optimization Technique is
used to find the best hyper-parameters of the NN model for SCF prediction.

Figure 3: Comparison of SCF for FEA Validation for Out-of-plane Bending.

3 Initial Sobol Sequence Sampling Method

A feed-forward BPNN is employed in the present study consisting of an input layer
with four neurons representing geometric parameters of steel tubular T-joints. Net-
work also includes an output layer with one neuron corresponding to SCFs at chord-
crowd, brace-crown, chord-saddle and brace-saddle locations. Determination of the
optimal hyper-parameters can be a challenging task because their values rely on prob-
lem and data-set characteristics. Thus, a Sobol sequence of all hyper-parameter com-
binations is generated to obtain the optimal NN model with fine-tuned hyper-parameters
and a sample of Number of Neurons density plot is shown in Figure 4 for brevity. Such
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Figure 4: Number of Neurons generated using Sobol Sequence Sampling Method.

a sequence with use of a Gray code handles non-uniform distributions via point trans-
formation. Thus the code becomes suitable for applications requiring non-uniform
sampling, such as optimizing learning rate and dropout in a study. Saltelli et al [15]
suggested that number of points (N) required for a balanced Sobol sequence should
be at least:

N = 4 ∗D ∗ (2M) (1)

A balanced Sobol sequence with a maximum level of Sensitivity, M = 4 and dimen-
sionality, D = 6 for the present case requires a minimum of 384 points for sensitivity
index estimation. 500 trial points were found adequate for hyper-parameter tuning
in Bayesian optimization. The Sobol sequence trial points in Bayesian optimization
generated evenly spaced initial points, reducing evaluations and thus improving ro-
bustness.

4 Sequential Bayesian Optimization Framework

Sequential Bayesian optimization maintains a probabilistic model, typically a Gaus-
sian Process, capturing function evaluation uncertainty represented by Root Mean
Squared Error (RMSE) between the true and the predicted metrics. Minimization
of RMSE provides model’s loss function. Gaussian Process model includes a mean
function for expected values and a covariance function for smoothness and correla-
tion. It estimates the next point by using acquisition function with updation from
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new evaluation which balances exploration and exploitation and computes expected
improvement (EI) over the current best value. The EI is computed as follows:

EI(x) = max(y − ybest, 0) ∗ p(y|x) (2)

where x is the point to evaluate, y is the predicted value of the surrogate model, ybest
is the best value so far, and p(y|x) is the probability of observing y at x. The ac-
quisition function selects the point maximizing expected improvement, leading to an
iterative optimization process. The Framework employs density plots of optimization
points to identify regions of concentrated clusters signifying hyper-parameter config-
urations with consistently lower validation losses for Out-of-plane Bending (OPB)
case. This information aids in selecting optimal hyper-parameters for improved per-
formance across multiple loading conditions at specific locations.

5 Results and Discussions

Prior to training the model, all input and output data points were scaled to the range
of 0 and 1. Scaling of data ensures consistent and standardized features, facilitating
neural network convergence and equal contribution of all features for optimal perfor-
mance. Additionally, removal of data-points with SCFs less than 0.5 from the training
data-set helped in the elimination of noise and outliers that hinder the learning process.
The testing data-set was split into two subsets: one for cross-validation to fine-tune
hyper-parameters and another for independent testing. This ensured a reliable assess-
ment of the model’s generalization on unseen data. After obtaining the optimal hyper-
parameter combination through Bayesian optimization, selected weights at the epoch,
over-fitting or under-fitting was advantageously prevented. This approach achieved
a balance between capturing data patterns and maintaining generalization, resulting
in optimal performance. Comparison of NN vs FEA, DNV, LR and % Under/Over
Prediction by 95% is tabulated in Table 2.

The neural network model demonstrated excellent performance with all data points
were residing within the 95% confidence band, affirming the model’s reliability. These
results signify a perfect balance, avoiding over-fitting or under-fitting and highlight-
ing the model’s strong generalization capabilities. The NN based SCFs showed a
90% correlation with DNV based SCFs at the crown-saddle location, indicating good
agreement. The NN captured accurate SCF behavior compared to the DNV equation.
The R-squared score between the NN and LR SCFs is approximately 76%, suggesting
the LR equation tends to over-predict SCFs. At the brace-saddle location, the NN and
DNV SCFs have an R-squared score of around 68% and the NN and LR SCFs have
an R-squared score of about 88.5%. For brevity, comparison of proposed NN models
with DNV and LR at brace saddle for OPB are shown in Figures 5 and 6, respectively.
DNV equation under-predicts for lower SCFs whereas LR equation over-predicts for
higher SCFs for brace-saddle location which results in disparity in fatigue life derived
between SCFs based on DNV and LR equation.
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Observations
FE DNV LR

Chord-
Saddle

Brace-
Saddle

Chord-
Saddle

Brace-
Saddle

Chord-
Saddle

Brace-
Saddle

R2 Score 99.42 99.47 89.74 68.2 75.9 88.59
% of Under-prediction 16.09 4.01 71.42 78.25 9.4 54.36
% of Over-prediction 29.29 21.21 19.71 18.36 84.8 28.34

Table 2: Comparison of NN vs FEA, DNV, LR and % Under/Over Prediction by 95%.

Figure 5: Comparison of Proposed NN Models with DNV at Brace Saddle for OPB.

Figure 6: Comparison of Proposed NN odels with LR at Brace Saddle for OPB.
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6 Conclusions

Results of present research demonstrated the superior performance of the NN model
for predicting SCFs. The study’s reliability is bolstered by including validated liter-
ature points utilizing DNV extrapolation techniques and optimized mesh configura-
tions. Incorporation of solid elements in SCF prediction models is found to be crucial
for accurate results, highlighting the limitations of empirical equations. Combination
of Sobol sampling and Bayesian optimization has been proved to be a powerful ap-
proach for optimization problems. Sobol sampling provided insights into influential
input variables, while Bayesian optimization efficiently searched for the best hyper-
parameters. Successful application of these methods in this study suggests their po-
tential for further applications in regression problems. DNV and LR equations exhibit
limitations such as under-prediction and over-prediction of SCFs. It is envisaged that
use of the proposed NN models for the computation of SCF in the offshore industry
would potentially prevent fatigue life overestimation or underestimating the in-situ
capacity leading to safe, practical and economical designs.
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