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Abstract

Surrogate models are increasingly used in many sectors due to their ability to repro-
duce structural/system responses starting from numerical or experimental results. The
main goal of a surrogate model is to preserve the same accuracy as the original model
(within a certain interval) by considerably reducing the computational cost and, pos-
sibly, the required resources.

Among the methods available in the literature, the one proposed in this article is
based on Non-Uniform Rational Basis Spline (NURBS) entities. In this context, these
entities appear promising, as they are continuous, versatile, able to adapt to Multiple-
Input-Multiple-Output problems, and can be modified locally without impacting the
precision of the metamodel elsewhere in the definition domain, i.e., possess capa-
bilities for local support. Conversely, the off-line tasks that allows generating the
NURBS-based surrogate model can be relatively heavy. In this paper, we propose an
optimisation strategy for reducing the amount of data required to drive the NURBS
metamodel while still maintaining a good accuracy level.

Keywords: metamodel, gradient-based optimisation, fitting, NURBS hyper-surfaces,
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1 Introduction

Despite the increase in computing power and resources over the past two decades,
solving complex numerical problems with real-time processing or optimisation re-
quirements still remains intractable. For this reason, much research effort has been fo-
cused on metamodelling techniques (also known as surrogate modelling techniques),
which allow the computational burden to be reduced while maintaining a good level
of accuracy for the problem at hand [1].

A metamodelling process consists of defining an approximation of a high-fidelity
model requiring less resources to be executed than the original model. More pre-
cisely, a metamodel is used to map input variables into output responses even when
the relationship between the two are not well defined or computationally expensive to
evaluate [2]. Depending on the problem, the term resources can have different mean-
ings. For example, surrogate models can be employed to reduce the number of data
to stock as in image reduction [3], while a metamodel generated for optimisation pur-
poses aims to reduce the computational cost to evaluate the outputs for a given sets
of inputs [4, 5]. Several techniques have been developed for metamodelling all re-
quiring a systematic approach composed of a calibration step, a training of the model
parameters, and evaluation of the accuracy of the metamodel [2].

Among the existing metamodelling techniques [1, 2, 5–7], this study relies on the
utilisation of M -D Non-Uniform Rational Basis Spline (NURBS) hyper-surfaces, de-
fined over a N -D parametric domain to approximate a given set of data points called
Target Points (TPs). NURBS entities offer many intrinsic advantages [1] compared to
the other metamodelling techniques, and their use as surrogate model has been widely
discussed in [1, 8, 9].

This work aims to generalise the metamodelling strategy based on NURBS hyper-
surfaces proposed by Audoux et al., [1]. Particularly, in [1], the strategy has been
coupled to a hybrid optimisation algorithm composed of the union of a special Genetic
Algorithm (GA) [10] and a general purposes gradient-based algorithm, i.e., the active-
set method [11], to optimise all the integer and continuous parameters involved in
the definition of the NURBS hyper-surfaces. The GA developed in [10] is used to
optimise both integer variables, i.e., degrees and number of Control Points (CPs), and
continuous variables, i.e., the inner components of the knot vectors and the weights,
of the NURBS entity. The CPs coordinates are derived through an analytical formula
(and the associated algorithm) discussed in [1]. Afterwords, only the weights and the
inner components are optimised by using a gradient-based algorithm. However, in [1],
the gradient of both the cost function and of the constraint functions were calculated
by finite differences; accordingly, the computational cost of the second step remains
too high.

To go beyond the aforementioned limits, the analytical expression of the gradient
of the NURBS-based metamodel with respect to weights and knot vector compo-
nents is proposed in this work to speed up the second step of the optimisation process
discussed in [1]. The effectiveness of the proposed approach is illustrated through
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meaningful benchmarks taken from the literature.
The paper is organised as follows. Section 2 gives an overview of the fundamentals

of the NURBS geometric entities, whilst Section 3 focuses on the generation of the
metamodel based on NURBS entities as a solution of an optimisation problem where
the goal is to approximate a generic set of data points. Section 4 shows the application
of the method through two test cases. Lastly, Section 5 ends the paper with conclusions
and prospects.

In this paper upper-case bold letters and symbols are used to indicate matrices,
while lower-case bold letters and symbols indicate column vectors.

2 Non-Uniform Rational Basis Spline Entities

NURBS entities are a generalisation of basis spline (B-spline) entities, which gener-
alise the Bézier ones [12]. Originally employed in Computer-Aided Design (CAD)
software in the 1990s as curves and surfaces, these entities are now used in several
domains such as topology optimisation [13, 14], shape optimisation [15], anisotropy
field optimisation for variable-stiffness composites [16], and surrogate model genera-
tion [1].

In this work, NURBS hyper-surfaces are used as surrogate models. These geomet-
rical entities are considered as a general vector-valued functions RN → RM where
N and M are respectively the input and output space dimensions. The goal is to fit a
dataset of NTP =

∏N
k=1(rk + 1) TPs Q of dimension M (i.e., each TP is defined in

RM ), coming from experiments or numerical simulations results.
Formally speaking, NURBS are able to approximate the behaviour of a model

M : RN → RM . Their general parametric explicit form reads:

H(ζ1, · · · , ζN) =
∑n1

i1=0 · · ·
∑n2

i2=0 Ni1,p1(ζ1) . . . NiN ,pN (ζN)ωi1,··· ,iNPi1,··· ,iN∑n1

j1=0 · · ·
∑n2

j2=0Nj1,p1(ζ1) . . . NjN ,pN (ζN)ωj1,··· ,jN
, (1)

with H the NURBS hyper-surface evaluated at the normalised coordinates (ζ1, · · · , ζN)
and Pi1,··· ,iN the M -D array of CPs containing NCP =

∏N
k=1(nk + 1) CPs having M

coordinates (i.e., the single CP is defined in RM ). For each CP, one can also introduce
its respective weight ωi1,··· ,iN > 0. Finally, Nik,pk are the Bernstein’s polynomials
equations of degree pk, evaluated recursively with the following Cox and De Boor
algorithm [12]:

Nik,0(ζk) =

{
1, if vik < ζk < vik+1

,

0, ortherwise,

Nik,qk(ζk) =
ζk − vik

vik+qk − vik
Nik,qk−1(ζk) +

vik+qk+1 − ζk
vik+qk+1 − vik+1

Nik+1,qk−1(ζk),

(2)
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with qk = 1, . . . , pk, ζk the dimensionless parameter along the parametric direction k
and vik the ik-th component (knot) of the non-periodic and non-uniform knot-vector
of length mk + 1:

vT
k = {0, · · · , 0︸ ︷︷ ︸

pk+1

, vpk+1, · · · , vmk−pk−1, 1, · · · , 1︸ ︷︷ ︸
pk+1

},with mk = nk + pk + 1. (3)

In the rest of this paper, the knots vik ̸= [0, 1] are called non-trivial knots, or inner
knots, to distinguish them from the trivial ones vik = [0, 1]. The knot-vector allows
to define the range of variation of basis functions that are non-zero between pk + 1
successive knots. Moreover, the trivial knots force the NURBS entities to pass exactly
through the TPs defined on the boundary of the manifold. For more information on the
fundamental properties of NURBS entities, the interested reader is referred to [12].

3 A NURBS-based metamodel

The steps required to generate a metamodel based on NURBS hyper-surfaces, similar
to other metamodelling strategies, care essentially two: the off-line part and the on-line
part. The first one represents the learning phase during which a database, from exper-
iments or numerical results, is built and used to generate the metamodel. Depending
on its accuracy, which is based on the evaluation of an error estimator, it can be opti-
mised. The second one corresponds to the use of the metamodel, which replaces the
original high-fidelity model.

The flowchart in Fig. 1 presents the main steps of the off-line part. The global scalar
parameters, i.e., rk, nk and pk can be set following literature guidelines [1, 12,15,18].
However, the evaluation of Nik,qk , ωi1,··· ,iN and Pi1,··· ,iN is a quite challenging task.
The Bernstein’s polynomials Nik,qk(uk), are evaluated recursively with the algorithm
Eq. (2) at each dimensionless parameter uk at which the NURBS hyper-surface is
evaluated (the dimensionless coordinates uk can be calculated directly from the input
variables [19]). The inner components of the knot vector vk can be initialised as
uniform or by considering the De Boor’s algorithm [17] and then optimised later.
Moreover, the weights ωi1,··· ,iN can be initialised either by setting them equal to 1 or
by considering empirical rules as discussed in [8].

Subsequently, it is necessary to compute the CPs coordinates, Pi1,··· ,iN . They are
calculated from the database via the resolution of a least-square by using a dedicated
algorithm conceived for multi-dimensional hyper-surface fitting problems [1]. The
goal of the least-squares problem is to determine the optimum value of the CPs coor-
dinates by minimising the difference between H and Q, i.e.:

fobj =
M∑
i=1

NTP∑
j=1

(Hi(uj)−Qi))
2 . (4)

Therefore, by differentiating the above expression with respect to the CPs coordi-
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nates, one gets:

minP(fobj) ⇒
∂

∂P

(
M∑
i=1

NTP∑
j=1

(Hi(uj)−Qi))
2

)
= 0,

⇒ (NTN)P = NTQ,

⇒ P = (NTN)−1NTQ,

(5)

where N is a multi-dimensional array containing all the Bernstein’s polynomial evalu-
ated at the dimensionless coordinates corresponding to the values of the input variables
used to build the database of TPs. The calculation of the multi-dimensional array N
and the determination of the CPs coordinates are anything but trivial and require ded-
icated algorithms. For more details on these aspects, the interested reader can refer
to [1].

Initial data base

CPs analytical evaluation
(Least square method [1])

B-Spline evaluationNURBS evaluation

Objective function

Gradient optimisation
regarding       

as design variables

Gradient optimisation
regarding       

as design variables

Optimised NURBS

Optimised B-spline

No
Yes

Yes

No

No

Optimised B-spline
regarding \      

Optimised NURBS
regarding \b

Inputs :
-iform knot vector
-     uniform
- 

adapted to
(De Boor refinement

algorithm [17])

adapted to
(Empirical rules [8])

Yes

Figure 1: The main steps of the workflow needed to generate the metamodel based on
NURBS entities.

After the determination of the optimum value of the CPs coordinates, the obtained
objective function fobj is checked by comparing it to the required accuracy, in terms
of average relative error εobj, which is defined a priori by the user. If this convergence
check is met, the metamodel based on B-spline hyper-surfaces can be used. Otherwise,
two further steps are considered corresponding to just as many optimisation problems.
The first optimisation aims to minimise the objective function fobj with respect to the
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coefficient βik , used to compute the inner knots vik of each knot vector vk according
to the strategy presented in for surface fitting problems [15]. At each iteration of the
optimisation process, the CPs coordinates are updated according to Eq. (5), where the
array N is updated by computing the Bernstein’s polynomial using the new optimised
knot vector according to Eq. (2). The second gradient-based optimisation aims to
minimise the objective function fobj with respect to the weights ω. The details of
the related algorithm work-flow are shown in Fig. 2, where ξi are the optimisation
variables, i.e., βk or ω. Each optimisation is performed by using the Sequential Least
Squares Programming (SLSQP) algorithm and by considering only the following box
constraints: βik ∈ [βlb, βub], and ω ∈ [ωlb, ωub]. It is noteworthy, that at the end of
each optimisation, the value of the objective function of the optimised solution is
compared with εobj to determine if the criterion on the required accuracy is satisfied.

Objective functionInitial value of 
optimised variable Optimised value of

CPs update

No

YesSLSQP
convergence

criteria

SLSQP updating

Figure 2: Workflow of the gradient-based optimisation to determine the optimum
value of the inner components of the knot vectors (updating the CPs) and
of the weights.

The analytical expression of the gradient of the cost function with respect to knot-
vector components and weights has been obtained by generalising the approach pre-
sented in [15] and more details will be provided during the speech.

4 Numerical results

This section shows the effectiveness of the proposed metamodelling strategy through
two test cases. The first test case deals with the approximation of a plane closed
parametric curve, taken from [13]. The second benchmark focuses on approximating
the maximum displacement of a thin plate under bending forces, by considering as
input variables the thickness and the applied force.

4.1 Benchmark 1: The four-leaf clover

The four-leaf clover is a plane closed curve described by two outputs, x and y, as a
function of the angle θ (the input variable), as follows:{

x(θ) = cos(θ) sin(2θ),

y(θ) = sin(θ) cos(2θ),
θ ∈ [0, 2π] . (6)
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The considered Single-Input-Multiple-Output (SIMO) system is characterised by N =
1 input and M = 2 outputs. The overall number of TPs is NTP = r1 + 1 = 54 and
the degree of the Bernstein’s polynomial is set as p1 = 2. The design variables to-
gether with their bounds for the knot vector components and weights are summarised
in Table ??.

n1 p1 m1 βlb βlb ωlb ωlb

10, 15 2 13, 18 0 1 1 10

Table 1: Design variables and their bounds for the four-leaf clover problem.

Fig. 3 shows the results of the gradient-based optimisation of the NURBS curve
by considering the inner components of the knot vector and the weights as design
variables according to the algorithm illustrated in Fig. 1. The optimised solutions
illustrated in Fig. 3 are obtained by considering two values of the number of CPs, i.e.,
NCP = 11 and NCP = 16.
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Hα, Initial B− spline
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Hα, Optimised NURBS
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Figure 3: Results of the gradient based optimisation for the approximation of the four-
leaf clover curve. Plots (c) - (d) show the differences in the curve fitting for
n1 = 10 and n1 = 15, i.e., respectively with NCP = 11 and NCP = 16.

However, a number of CPs NCP = 11 is not sufficient to correctly approximate the
curve, as shown in Fig. 3-(c). In fact, increasing the number of CPs to NCP = 16,
results in an objective function value 100 times lower than the one. Nonetheless, the
gain obtained in optimising the weights and the knot vector components has the same
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n1 Initial B-spline Optimised B-spline Optimised NURBS Gain [%]
fobj 10 1.21 · 10−1 1.036 · 10−1 0.86 · 10−1 28.9
fobj 15 3.7 · 10−3 3.36 · 10−3 3.32 · 10−3 10.1

Table 2: Results of the gradient based optimisation for the four-leaf clover curve fit-
ting problem. The gain is evaluated comparing the initial B-spline with the
optimised NURBS.

order of magnitude for both cases. This result confirms one of the guidelines provided
by [18], which specifies to consider at least a ratio of number of CPs to number of TPs
equal to 1/3 to have a good approximation.

4.2 Benchmark 2: The thin plate under bending force

The second test case belongs to the field of solid mechanics and it consists of study
the out of plane displacement of a thin plate under bending force. The geometry and
boundary conditions for the thin plate are illustrated in Fig. 4.

Figure 4: Geometries and boundary conditions for test case 2.

The metamodel aims at providing the displacement along the z axis of the node
where the force is applied for different values of the thickness t and force F . The
thickness t varies in the range [1, 10] mm, and the force F varies in the interval
[150, 300] N. The metamodel is characterised by two inputs N = 2 and one output
M = 1. The Finite Element (FE) model is made of 1250 SHELL181 elements with
four nodes and six degrees of freedom per node. The number of elements has been
chosen as a result of a convergence analysis (not reported here for the sake of brevity).
The set of TPs (whose total number is NTP = 400), obtained through a nonlinear FE
static analysis carried out via the ANSYS code, is represented by the displacement
along the z axis of the node where the force is applied for different values of t and
F . A bi-linear elastic perfectly plastic material model is considered in the non-linear
static analysis whose properties are listed in [20]. The design variables together with
their bounds for the knot vector components and weights are summarised in Table ??.

Fig. 5 shows the displacement along z axis of the node where the force is applied
for for different values of t and F .
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n1,2 p1,2 m1,2 βlb βup ωlb ωub

10 3 14 0 1 1 10

Table 3: Design variables and bounds for the optimisation problem of benchmark 2.
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Figure 5: Contour plot of the predicted displacements. Plots (a) and (b) present the
behaviour of the metamodel for constant force and thickness, respectively.

As for test case 1, the efficiency of the gradient based optimisation method, is
measured by evaluating the decreasing of the objective function as listed in Table ??.
The results of this second test case show the effectiveness of applying the optimised

Initial B-spline Optimised B-spline Optimised NURBS Gain [%]
fobj 8.7 · 10−1 4.173 · 10−5 4.166 · 10−5 99.99

Table 4: Results of the optimisation strategy for the thin plate under bending. The
gain is evaluated comparing the initial B-spline with the optimised NURBS.

NURBS-based metamodel to a physical case. In this case, the ratio between the
number of CPs and TPs is NCP/NTP ≈ 1/3, which satisfies the minimum condition
of [18]. However, the NCP is not sufficient to approximate with good accuracy the
initial database without the optimisation. Accordingly, after the optimisation, the error
is greatly reduced and the final gain from the optimisation is almost 100 %. Finally, a
good initialisation of the parameters combined with an intelligent optimisation makes
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it possible to obtain promising first results for this type of optimised NURBS-based
metamodel.

5 Concluding remarks

This paper presents an innovative metamodelling technique based on NURBS hyper-
surfaces. Thanks to its versatility, the proposed approach can be easily employed for
problems of different complexity.

Moreover, when the number of CPs is sufficiently high, the optimisation of the knot
vectors components and the weight not systematically required. However, when the
database is poor in terms of data points amount, or if the number of CPs is reduced
for storage reasons, the error criterion will be no longer satisfied. Accordingly, the
optimisation of the inner components of the knot vectors and the weights associated
to the CPs, should be performed to improve the solution accuracy.

Nonetheless, the gradient-based optimisation may introduce noise into the approx-
imated results. Therefore, to overcome this limitation a smoothing term should be
introduced in the expression of the objective function. Research is ongoing on this
aspect.
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