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Abstract

This paper deals with topology optimisation (TO) problem with design-dependent
loads. Specifically, the problem is formulated in the context of a special density-based
TO algorithm wherein a non uniform rational basis spline (NURBS) entity is used to
represent the topological descriptor, i.e., the pseudo-density field. In this context, TO
problems involving design-dependent loads are addressed, in the most general case
of inhomogeneous Neumann-Dirichlet boundary conditions. A study of the penalty
function of the design-dependent loads is carried out to investigate its effect on the
optimised topologies and overcome the singularity effect related to the zones charac-
terised by low values of the pseudo-density field. Finally, the combination of both
design-dependent loads and inhomogeneous Neumann-Dirichlet boundary conditions
is investigated and the effectiveness of the method is proven on a 2D benchmark prob-
lems.
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1 Introduction

Nowadays topology optimisation (TO) is increasingly used in both the academic and
the industrial fields thanks to the recent evolution and development of the additive
manufacturing technologies that allow the production of different and complex shapes.
The aim of TO is to determine the optimal distribution of the material, within a pre-
scribed domain, to minimise a given objective function satisfying a set of design re-
quirements [1]. In the last 30 years, many algorithms for TO have been developed,
but among them the two most known and used families of algorithms are represented
by the density-based methods [1–4] and the level set method (LSM) [5, 6]. In this pa-
per we focus exclusively on the first class of methods. In density-based TO methods,
a penalisation scheme is introduced to avoid meaningless intermediate values of the
pseudo-density field and guarantee the convergence to a black and white design. In
this context, an efficient and versatile method has been recently developed at the I2M
laboratory in Bordeaux ( [7–11]) and consists of reformulating the classic density-
based algorithms in the framework of non-uniform rational basis spline (NURBS)
hyper-surfaces [12–14]. This method, called NURBS-density-based method, intro-
duces different advantages, like the compatibility with computer aided design (CAD)
software [8, 15], the independence of the topological descriptor on the finite element
(FE) model mesh and, consequently, the reduction of the checker-board effect [13]. It
is well known that the most studied problem in the field of TO is that of maximising the
structural stiffness under design-independent loads. However, when design-dependent
loads are considered, some modifications must be introduced in the problem formula-
tion, as well as in the optimisation process.

When including design-dependent loads in a TO problem, the boundary of the
structure evolves during the optimisation process and consequently, the design-
dependent loads change their locations, magnitudes and/or directions as the TO anal-
ysis progresses [16]. Accordingly, this class of problems is characterised by three
main issues: the non-monotonous behaviour of the compliance, the inactive volume
constraint of the optimal topology and the low density parasitic effects when using
classical penalisation schemes, like the SIMP one [16, 17].

This work aims to investigate this class of TO problems in presence of inertial loads
in the framework of the NURBS-density-based method. Firstly, the expression of the
gradient of the merit function, i.e., the generalised compliance [10], is provided in the
most general case of inhomogeneous Neumann-Dirichlet boundary conditions (BCs).
Successively, different penalisation schemes are studied to overcome the drawbacks
associated with design-dependent loads and a new penalisation scheme is proposed to
deal with the issues mentioned above. Numerical tests are conducted on a meaningful
2D benchmark problem to investigate all the aspects mentioned above.

The remainder of the paper is as follows. The fundamentals of the NURBS density-
based method are recalled in Section 2. The penalisation schemes used in this work are
introduced in Section 3. The numerical analyses aimed at investigating the influence
of the non-zero Neumann-Dirichlet boundary condition and the penalty schemes on
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the optimised designs are presented in Section 4. Finally, Section 5 ends the paper
with some concluding remarks and prospects.

2 The NURBS-density-based method

The NURBS-density-based method is briefly described for 2D TO problems in the
following. For more details the reader is addressed to [7, 10, 18]. Without loss of
generality, in the following the design domain is defined as a compact rectangular
of size L1 × L2. Of course, the size and shape of the 2D design domain can be
different but can be always embedded in a rectangle. Thus, let D := {(x1, x2) ∈
R2 | xj ∈ [0, Lj], j = 1, 2.} be a compact subset defined in the Cartesian orthogonal
frame O(x1, x2) representing the design domain. In the framework of the NURBS-
density-based method, the topological variable, i.e., the pseudo-density field, for a 2D
problem is represented through a 3D surface, where the first two coordinates represent
the Cartesian coordinates, while the last one is the pseudo-density field, which reads:

ρ(ζ1, ζ2) =

n1∑
i1=0

n2∑
i2=0

Ri1i2(ζ1, ζ2)ρi1i2 . (1)

In Eq. (1), ρi1i2 is the value of the pseudo-density at the generic control point (CP) of
the NURBS surface, ζk ∈ [0, 1] is the k-th parametric coordinate, and (nk + 1) is the
number of CPs along this direction. The total number of CPs is nCP :=

∏2
i=1(ni +1),

while Ri1i2 is rational basis function defined as: The rational basis function Ri1i2 in
Eq. (1) is defined as:

Ri1i2 :=
ωi1i2

∏2
k=1Nik,pk(ζk)∑n1

j1=0

∑n2

j2=0

[
ωj1j2

∏2
k=1Njk,pk(ζk)

] , (2)

where Nik,pk(ζk) are the Bernstein’s polynomials of degree pk [13] and ωi1i2 is the
weight associated with the generic CP whose value influences the way the surface is
attracted towards that CP. The dimensionless parameters ζj can be defined as:

ζj =
xj

Lj

, j = 1, 2, (3)

where xj is the Cartesian coordinate along the j-th axis defining the design domain
and Lj is the characteristic length defined along that axis. The shape of the NURBS
surface is affected by different parameters, of which only the pseudo-density values at
the CPs and the associated weights are considered as design variables and arranged in
the arrays ξ1 ∈ RnCP×1 and ξ2 ∈ RnCP×1:

ξT1 := {ρ00, ..., ρn1n2}, ξT2 := {ω00, ..., ωn1n2}, ξ1, ξ2 ∈ RnCP . (4)

According to Eq. (4), the number of design variables is at most nvar = 2nCP in the
case of NURBS. In the framework of the NURBS-density-based method, the deriva-
tion of the formal expression of the gradient of the physical requirements is facilitated
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by the use of the local support property of the Bernstein’s polynomials [10, 13] and
exploiting the chain rule. When design-dependent loads are applied to the structure in
the general case of non-zero Neumann-Dirichlet boundary conditions [10], the gov-
erning equation of the static equilibrium problem reads:[

K KBC

KT
BC K̃

]{
u

uBC

}
=

{
f
r

}
, (5)

where u and uBC are the unknown and imposed vectors of generalised displacements
respectively, K, KBC and K̃ are the stiffness matrices of the FE model after applying
the BCs. The vector r contains the nodal reactions and depends on the imposed BCs,
while the vector of external forces f depends upon the density field, i.e., f = f0 +
fi (ρ (x)), f0 and fi being the design-independent and inertial forces, respectively. The
equilibrium, in its compact form, is written as:

K̂û = f̂ . (6)

The generalised compliance, introduced as cost function by Montemurro [10], reads:

C = fTu− uT
BCr, (7)

while its partial derivatives, in presence of a design-dependent loads, become:

∂C
∂ξiτ

=
∑
e∈Sτ

∂ρe
∂ξiτ

(
2we,ext

ϕfe

∂ϕfe

∂ρe
− we

ϕKe

∂ϕKe

∂ρe

)
, , i = 1, 2 τ = 1, . . . , nCP, (8)

where ϕfe and ϕKe are the functions used to penalise the inertial loads and the stiffness
matrix, respectively, evaluated at the element centroid (see Section 3 for more details),

while the term
∂ρe
∂ξiτ

is the partial derivative of the NURBS surface that can be found

in [10]. Unlike the formulation presented in [10], a new term occurs in the evaluation
of the compliance gradient related to the presence of design-dependent loads. Particu-
larly, in Eq. (8), we,ext is the work of the design-dependent loads applied to the nodes
of the generic element, whilst we is the internal work (which is twice the strain energy
of the element). Consider, now, the case of the self-weight as inertial load. It can be
expressed as:

f0ie =
1

4
ϱmeVegι0, (9)

where Ve and ϱme are the volume and the density of the material of the generic element,
respectively, while g is the gravitational acceleration. The vector ι0 depends on the
type and shape of the generic element. For a quadrilateral element with four nodes
and two degrees of freedom (DOFs) per node, it is defined as:

ιT0i = (0,−1, 0,−1, 0,−1, 0,−1) . (10)

The design requirement considered in this study is about the lightness and is expressed
through a constraint on the volume of the structure. The associated constraint function
reads:

g(ξ1, ξ2) :=
V

Vref

− γ = 0, (11)
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where Vref is a reference value of the volume and γ is the prescribed volume fraction.
Therefore, the problem is formulated as a constrained non-linear programming prob-
lem (CNLPP) as follows:

min
ξ1,ξ2

C(ξ1, ξ2)
|Cref |

, subject to:


K̂û = f̂ ,

g(ξ1, ξ2) = 0,

ξ1j ∈ [ρmin, ρmax], ξ2j ∈ [ωmin, ωmax],

j = 1, ..., nCP,

(12)

where Cref is the reference value of the compliance of the structure (the absolute value
is considered in the above formula because in the case of non-zero mixed BCs the
compliance is not a positive definite function), ρmin and ρmax are lower and upper
bounds for the pseudo-density evaluated at each CP, while ωmin and ωmax are the
bounds for the weights. To avoid singularity the lower bound of the pseudo-density
must be strictly positive. In all the analyses carried out in this paper, the bounds of
the design variables have been set as follows: ρmin = 0.001, ρmax = 1.0, ωmin = 0.5,
ωmax = 10.0.

3 The penalisation schemes

The choice of the material interpolation scheme constitutes an important step of the
problem definition: it influences the optimal topology, the convergence of the problem
and can affect the problem through parasitic effects and singularity issues [17, 19].
However, choosing a proper penalisation scheme is anything but trivial. The schemes
used in this study are briefly discussed below.

3.1 Penalisation of the inertial loads

The inertial loads of the generic element e are penalised according to the following
formula:

fie = ϕfef
0
ie, (13)

where the expression of f0ie is given in Eq. (9) in the case of the self-weight. In this
paper, two different types of penalisation function ϕf are considered. The first and
easier penalisation scheme that one can formulate is a linear penalisation scheme that
reads:

ϕf (ρe) = ρe,
∂ϕf (ρe)

∂ρe
= 1. (14)

The second one is a modified version of the linear penalisation scheme, which reads:

ϕf (ρe) =

(
ρe − ρmin

1− ρmin

)β

,
∂ϕf (ρe)

∂ρe
=

β

1− ρmin

(
ρe − ρmin

1− ρmin

)β−1

. (15)

This second scheme has been introduced to avoid singularity of the solution of the
equilibrium problem (in terms of the displacement field) when the pseudo-density
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takes low values [17]. Indeed, when using the linear penalisation law for the inertial
forces and the SIMP scheme for the element stiffness matrix, when ρe = ρmin this
would result in a set of inertial loads having a finite value applied to an element with
a near-zero stiffness matrix. Conversely, using the penalty scheme of Eq. (15), when
ρe = ρmin the inertial loads are exactly zero, regardless of the penalisation scheme
used for the stiffness matrix. For the numerical analyses presented in this paper, the
parameter β has been set equal to one.

3.2 Penalisation of the stiffness matrix

The stiffness matrix of the generic element e is penalised as follows:

Ke = ϕKeK
0
e, (16)

where K0
e is the unpenalised stiffness matrix, whose expression is given in [10]. In

this paper, three different types of penalisation functions ϕK are considered. The
polynomial penalisation law used [20] reads:

ϕK(ρe) = (1− ε)ραe + ερe,
∂ϕK(ρe)

∂ρe
= α(1− ε)ρα−1

e + ε, (17)

where α > 1 is the penalisation parameter (in this work α = 3 is considered), while
the parameter ε = 1

16
is introduced to avoid that, for small values of density, a mis-

match finite-infinite occurs. The second penalty scheme is the Rational Approxima-
tion of Material properties (RAMP) [21], which has the advantage that the partial
derivative takes a finite value when the pseudo-density goes to zero, achieving better
performance for TO problems with design-dependent loads. The RAMP scheme can
be expressed as:

ϕK(ρe) =
ρe

1 + q(1− ρe)
,

∂ϕK(ρe)

∂ρe
=

1 + q

[1 + q (1− ρe)]
2 , (18)

where q is the penalisation parameter and it is usually set as q = 8 to penalise inter-
mediate values of the pseudo-density field. The third penalisation scheme is the SIMP
approach [1, 2, 22], which reads:

ϕK(ρe) = ραe ,
∂ϕK(ρe)

∂ρe
= αρα−1

e , (19)

where α is the penalty parameter: which has been set as α = 3.

4 Numerical results

Numerical analyses are performed to test the effectiveness of the proposed method
and evaluate the combined effects of design-dependent loads and inhomogeneous

6



Penalisation scheme DC1 DC2 DC3 DC4

Inertial load Eq. (14) Eq. (14) Eq. (15) Eq. (15)
Stiffness matrix Eq. (18) Eq. (17) Eq. (19) Eq. (18)

Table 1: Design cases.

Neumann-Dirichlet boundary conditions. The method is implemented in SANTO
(SIMP and NURBS for topology optimisation), developed in [9, 11] and coded in
Python. The 2D benchmark, taken from [17], is shown in Fig 1 and it is characterised
by the following geometrical parameters: L1 = 200 mm, L2 = 100 mm and thick-
ness t = 1 mm. The FE model is constituted of Ne = 40 × 80 PLANE182 elements
(plane elements characterised by four nodes with two DOFs for each one and plane
stress hypothesis) and it is obtained through the software ANSYS APDL. A zero dis-

Figure 1: 2D benchmark subjected to design-dependent loads and inhomogeneous
Neumann-Dirichlet BCs.

placement is set at the node (x1, x2) = (0, 0), while on the node (x1, x2) = (L1, 0),
the displacement u2 = 0 is imposed. Moreover, a gravitational load is applied on
the whole body, imposing g = 9.8066 m/s2 as gravitational acceleration along the
y-axis and a variable horizontal displacement δ1 is imposed on the node located at
(x1, x2) = (L1, 0), assuming the values δ1 ∈ {−10,−7,−4,−1, 0, 1, 4, 7, 10} × 10−3

mm for each case considered. The material properties used for this benchmark are:
E = 2e5 MPa, ν = 0.3 and ϱm = 7.85e− 6 kgmm−3. The numerical simulations are
carried out considering a NURBS surface as a descriptor of the pseudo-density field
with a degree p = 3. The number of CPs is equal to NCP = 3

4
Ne = 75 × 32. These

parameters have been chosen as a results of a sensitivity analysis that is not illustrated
here for the sake of brevity, but that will be shown during the speech. The analyses
presented in this section are carried out considering a volume fraction γ = 0.4 and
for four design cases (DC) corresponding to just as many penalisation schemes com-
binations as listed in Table ??. The CNLPP of Eq. (12) has been solved with the
globally convergent method of moving asymptotes (GC-MMA) algorithm [23] with
the parameters presented in [10]. The results are shown in Figs. 2-5 in terms of
generalised compliance vs. the applied displacement for the different DCs described
above. For each optimised topology, the number of iterations to achieve convergence
is also given in each plot. Moreover, the constraint on the volume fraction is met for
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each optimised design. From the analysis of these results, one can notice that when
considering DC3, the optimisation process achieves the convergence in less iterations,
except for the case δ1 = 0 mm where the solution search process probably stucks in
a saddle point (characterised by intermediate values of the pseudo-density field). It is
noteworthy that all the penalisation schemes lead to the same trend of the generalised
compliance vs. the imposed displacement, with negatives values for all the values of
δ1 (except the case δ1 = 0) and lower values of the objective function for DC3 and
DC4. In contrast, DC2 and DC3 bring to similar optimal topologies, while DC1 and
DC4 lead to solution similar to each other but substantially different from the other
two DCs.

Figure 2: Optimised solutions of the 2D benchmark subjected to design-dependent
load and mixed non-zero BCs: DC1.

Figure 3: Optimised solutions of the 2D benchmark subjected to design-dependent
load and mixed non-zero BCs: DC2.
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Figure 4: Optimised solutions of the 2D benchmark subjected to design-dependent
load and mixed non-zero BCs: DC3.

Figure 5: Optimised solutions of the 2D benchmark subjected to design-dependent
load and mixed non-zero BCs: DC4.

5 Concluding remarks

In this paper, TO problems involving design-dependent loads have been reformulated
and studied in the framework of the NURBS-density-based TO algorithm. The analy-
sis has been limited to the case of inertial forces.

Specifically, the influence of different penalty schemes on the optimised topology
is investigated by considering different combinations of penalty functions for both in-
ertial loads and stiffness matrix. It is noteworthy from the obtained results that all
the penalisation schemes lead to the same trend of merit function vs. applied dis-
placement, with negative values for all the non-null displacements. Moreover, the
optimisation process considering DC3 achieves the convergence in less iterations, ex-
cept for the case δ1 = 0 mm, which constitutes a saddle point of the TO problem.
Globally, the lower values of the objective function are achieved for DC3 and DC4.
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Further analyses on 2D and 3D benchmark structures will be illustrated during the
presentation.

Regarding the prospects of this study, research is ongoing to extend the proposed
approach to different kind of design-dependent loads, e.g., thermomechanical loads.
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