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Abstract 
 

To optimize the transportation of designated waste from the Great East Japan 
Earthquake, which contains radioactive material and poses risks to the environment 
and public safety, a cost function was formulated to create a transportation plan using 
quantum annealing, a computational method that specializes in solving combinatorial 
optimization problems. This method can be performed using actual quantum 
annealing machines with more than 5,000 qubits that are currently available. The 
study evaluates the feasibility of using quantum annealing to optimize the 
transportation planning of designated waste and increase efficiency while minimizing 
risks. 
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1  Introduction 
 

Radioactive designated waste from the Great East Japan Earthquake is transported 
with Global Navigation Satellite System (GNSS)-based central management to avoid 
disruption, reducing the risk of waste pillage and air dose increase. Approximate 
solutions are used to optimize the pre-established plan due to the problem's 
complexity. 
 

Interest in quantum computers has been rapidly increasing in recent years, with the 
development of quantum gate-based computers and applications such as Variational 
Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm 
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(QAOA), but their practical significance for conventional computing is yet to be 
confirmed due to the requirement for a quantum computer with over one million 
qubits that does not currently exist [1], [2], [3]; meanwhile, quantum annealing, a 
computational method for solving combinatorial optimization problems, has been 
proposed and commercialized, with machines with over 5,000 qubits now available, 
which works by gradually weakening a transverse magnetic field applied to an Ising 
model to obtain a combination of qubits with the lowest energy, with the objective 
function and constraints of the problem expressed as Quadratic Unconstrained Binary 
Optimization (QUBO) using this model, and is being studied for solving real-world 
social problems [4], [5], [6], [7]. 

 
In this study, we used quantum annealing to optimize the transportation planning 

of designated waste by formulating a cost function that considers the surrounding 
environment. The study aims to evaluate the feasibility of this approach.  

 

2  Methods 
 

Quantum annealing Quantum annealing was proposed in 1989 [4] as an optimization 
method inspired by simulated annealing [8] uses quantum fluctuations to search for 
the ground state with the lowest energy and has potential in solving complex 
optimization problems in various fields, as demonstrated by studies such as 
optimizing vehicle routes to mitigate traffic jams [9], optimizing travel routes of 
Automated Guided Vehicles (AGVs) in a factory [10], and portfolio optimization 
[11]. Therefore, quantum annealing has potential in solving complex optimization 
problems, while simulated annealing is a global optimization method that uses thermal 
fluctuations. 
 
 In this study, a cost function was formulated to optimize the transportation of 
designated waste while considering constraints such as an equal number of transports 
from each loading facility, completing planned transports within working hours, and 
avoiding simultaneous arrivals/departures at unloading sites. Quantum annealing was 
used to solve the QUBO cost function for both normal and delayed transportation 
plans. This study demonstrates the potential of quantum annealing in optimizing 
transportation plans that satisfy specific constraints related to designated waste 
transport.  
 

 Figure 1 depict the problem created through quantum annealing optimization. The 
transportation time from the loading facility S  to unloading facility E  is denoted as 
𝑅 ,  and is calculated based on the number of squares in the transportation plan, with 
a 30-minute assumption for loading, transportation, and unloading time. 
 The transportation planning problem for designated waste from multiple loading 
facilities to multiple unloading facilities is transformed into a cost function equation 
(1) that can be solved using quantum annealing for combinatorial optimization. 

𝐻 𝜆 𝐻 𝜆 𝐻 𝜆 𝐻 𝜆 𝐻 𝜆 𝐻                     (1)
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here, H is the cost function in QUBO form that is optimized using quantum annealing, 
𝐻  is the objective function, and 𝐻 ,𝐻 ,𝐻 , 𝐻  are the constraints in the problem. 
𝜆 , 𝜆 , 𝜆 , 𝜆 , 𝜆  are the weights on each objective function term and constraint term. 
 

 
Figure 1: Schematic diagram of the study problem. 

 
The objective function 𝐻  for the optimization problem of interest is expressed in 
Equation (2). 
 

𝐻 ∑ 𝑞                                                 (2) 
  
Here, 𝑞  is a qubit that outputs 0 or 1, N is the number of loading facilities, and 𝑇 is 
the number of times at which transportation is to start. When the qubit 𝑞  outputs 1, 
it means that the transport will be performed at the specified time, so when the 
objective function 𝐻  is the smallest, the plan is to perform the most transports. The 
constraint 𝐻 , which adjusts the number of transports from the loading facility 𝑆  to 
the same level as the number of transports from other loading facilities, is expressed 
in Equation (3). 
 

𝐻 ∑ ∑ ∑ 𝑞 ∑ ∑ 𝑞    (3) 

 
When 𝐻  is the smallest, the number of transports from each loading facility is the 
same, and a transportation plan without bias by the facility is created. The constraint 
𝐻  to avoid transportation that cannot arrive within working hours is expressed by 
Equation (4). 
 

  𝐻 ∑ ∑ ∑ 𝑞
,

                          (4) 
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 When 𝐻  is the smallest, all transportation is planned to be completed within the 
working hours. The constraint 𝐻 , which prevents the overlapping of the unloading 
times of multiple transportations, is expressed in Equation (5). 
 

𝐻 ∑ ∑ ∑ ∑ 𝑞
, ,

𝑞, ,  

(5) 
 In Equation (5), 𝑞

, ,
 and 𝑞  represent 

transports that start from different loading facilities and arrive at the unloading facility 
at the same time. Therefore, when 𝑞

, ,
 and 

𝑞  are both equal to 1, overlapping unloading times occur. In 

Equation (5), the value of 𝑞
, ,

𝑞  

is equal to the value of 𝑞
, ,

 and 𝑞  are both 
1, the value is 9/4; when either of them is 1, the value is 1/4; and when both of them 
are 0, the value is 1/4. As a result, when 𝐻  is minimized, the number of vehicles 
arriving at the unloading facility is either one or zero at each time, thus preventing 
duplication of unloading times. The constraint 𝐻  to prevent the initiation of multiple 
types of transport from one loading facility to different unloading facilities at the same 
time is expressed in Equation (6). 
 

𝐻 ∑ ∑ ∑ 𝑞                      (6) 

 We optimize the transportation plan of the designated waste by using quantum 
annealing to obtain the combination of outputs of qubits 𝑞  that makes Equation (1), 
which is expressed in detail in Equations (2)-(6), the smallest. In this paper, we assign 
qubits 𝑞  to each arrival point of the unloading facility at each transportation start time 
for one loading facility, so that 𝑁𝑀𝑇 variables are required in the optimization of the 
transportation plan for the designated waste. 
 
 The optimization using the formulated cost function is performed on a 
superconducting qubit quantum annealing machine provided via the cloud by D-Wave 
[6], [11]. The machine has 5760 qubits, but it is not fully coupled and uses auxiliary 
qubits to represent the interaction between each qubit [12], [13]. As a result, the size 
of the problem that can be solved is smaller than the total number of qubits available. 
 

3  Results 
 

In an experiment to verify the validity of the cost function formulated in Chapter 3, 
optimization using quantum annealing and simulated annealing was conducted under 
the conditions in Table 1. The cost function was set to have 16 time cells for each 30-
minute interval between 9:00 and 17:00 working hours. 
 
 In this section, we evaluate the accuracy of optimization by the number of qubits 
of the actual quantum annealing machine, by specifying the number of loading and 
unloading facilities from two to four points and creating a cost function for each of 
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them. Previous studies have provided guidelines for determining the weights of each 
term of the cost function used in the optimization by quantum annealing [14], [15]. 
Empirically, the weights should be set so that the amount of decrease in the objective 
function term due to the failure to satisfy the constraints does not exceed the amount 
of increase in the constraint term. In Equation (1), 𝜆 , 𝜆 , and 𝜆  should be set larger 
than 𝜆  to avoid the overlap of unloading times and complete the transportation 
within working hours. The weights 𝜆 of each term are determined in the order of 1 to 
4 below, as completing the transportation within working hours is crucial for 
protecting the working environment of workers and ensuring the timely completion 
of transportation. Avoiding the overlap of unloading times is also essential to prevent 
the increase of air dose and the risk of waste leakage due to vehicles staying near the 
unloading facilities.  
 

1. Transportation must be completed during working hours. 
2. Avoid duplication of loading and unloading times. 
3. Maximize the number of transports per day. 
4. Maintain the same number of transports from each loading facility. 
 

 Parameters Value 

Weight of the objective function term 𝜆  10 

Weight of the constraint term 𝜆  5 

Weight of the constraint term 𝜆  100 

Weight of the constraint term 𝜆 , 𝜆  50 

Transportation time 𝑅 ,  1 

Transportation time 𝑅 ,  2 

Transportation time 𝑅 ,  3 

Transportation time 𝑅 ,  4 

Transportation time 𝑅 ,  2 

Transportation time 𝑅 ,  3 

Transportation time 𝑅 ,  4 

Transportation time 𝑅 ,  5 

Transportation time 𝑅 ,  3 

Transportation time 𝑅 ,  4 

Transportation time 𝑅 ,  5 

Transportation time 𝑅 ,  6 

Transportation time 𝑅 ,  4 

Transportation time 𝑅 ,  5 

Transportation time 𝑅 ,  6 

Table 1: Execution conditions. 
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Figure 2: Optimization flow. 

 

 The weight of the second term in constraint condition 4 was set to be smaller than 
that of the objective function term to account for the variation in the number of units 
transported from each loading facility. Figure 6 illustrates the optimization process 
using the D-Wave superconducting qubit machine. 
 
 The transportation plan was created based on the quantum state with the smallest 
value of the cost function obtained from repeated annealing. For experiments using 
simulated annealing, dwave-neal [16], one of D-Wave's Ocean software development 
kits, was used. The execution environment for simulated annealing is based on 
Windows 10 Home, with the CPU of Intel® Core™ i5-9400, and RAM of 8.0 GB. 
 
 Table 2 summarizes the experimental results of optimization using the actual 
quantum annealing machine. The results show the probability of satisfying the 
constraint conditions and the optimal solution for each number of loading facilities. 
The number of variables used in the cost function differs from the number of qubits 
used in the actual machine, and the probability of completing transportation within 
working hours and avoiding overlap between loading and unloading times are 
important constraint conditions. The optimal solution is the output with the smallest 
value of the cost function while satisfying the constraints. 
 
 

Number 
of 

loading 
facilities 

Number of 
unloading 
facilities 

Variables The 
actual 

number 
of 

qubits 

Probability 
of finding 

the optimal 
solution 

[%] 

The 
difference 

in cost 
function 

value from 
the 

optimal 
solution 

Probability 
of 

satisfying 
the 

constraint 
[%]. 

2 2 56 545 0 35 64.4 
3 2 96 1033 0 100 6.7 
4 2 128 1780 0 105 1.9 
3 3 144 2471 0 235 0.6 
4 3 192 3891 0 250 0 

Table 2: Optimization results by quantum annealing. 
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Parameter Value
Initial state Random

Initial temperature 10
Endpoint temperature 0.1
Number of inner loops 1000
Number of outer loops 1000

Table 3: Parameter settings for simulated annealing. 
 

 Simulated annealing was compared to quantum annealing for optimization using 
1000 runs per cost function for various numbers of loading and unloading facilities, 
with parameter settings for simulated annealing listed in Table 3 and results shown in 
Table 4. 
 
 Table 2 shows that the optimization using quantum annealing satisfied the 
constraints for samples with variables up to 144 but failed for the samples with 4 
loading and 3 unloading facilities due to overlapping unloading times. Simulated 
annealing, on the other hand, detected the optimal solution in all samples. Figure 2 
shows the time required for both methods, with QA referring to quantum annealing 
and SA to simulated annealing. 
 
 
 

Number of loading 
facilities 

Number of unloading 
facilities

Variables Probability of finding the 
optimal solution [%] 

2 2 56 99.7 
3 2 96 99.9 
4 2 128 99.9 
3 3 144 91.1 
4 3 192 98.7 

Table 4: Optimization results by simulated annealing. 
 

 

 
Figure 2: Annealing execution time for optimization. 
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4  Conclusions and Contributions 
 

This study compared quantum annealing and simulated annealing for optimizing 
transportation plans for designated waste. Quantum annealing struggled with 
convergence as the number of qubits increased, while simulated annealing produced 
the best results. The study highlights the importance of designing an appropriate cost 
function and demonstrates the current limitations of quantum annealing in solving 
complex optimization problems. Future work includes evaluating optimization results 
with various parameter settings and defining additional constraints in the cost 
function. Overall, this study emphasizes the importance of carefully designing the cost 
function for desired outcomes. 
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