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Abstract 
 

This work exploits unsupervised data-driven AI-based structural health monitoring 

(SHM) in order to propose a continuous online procedure for damage detection based 

on train-induced dynamic bridge responses, taking advantage of the large-magnitude 

loading for enhancing sensitivity to small-scale structural changes. While such large 

responses induced by trains might create more damage-sensitive information in the 

measured response, it also amplifies the effects on those measurements from the 

environment. Thus, one of the biggest contributions herein is a methodology that 

exploits the large bridge responses induced by train passage while rejecting the 

confounding influences of the environment in such a way that false positive detections 

are mitigated. Furthermore, this research work introduces an adaptable confidence 

decision threshold that further improves damage detection over time. To ensure an 

online continuous assessment, a hybrid combination of autoregressive exogenous 

input (ARX) models, principal components analysis (PCA), and clustering algorithms 

was sequentially applied to the monitoring data, in a moving window process. Since 
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it was not possible to introduce damage to the bridge, several structural conditions 

were simulated with a highly reliable digital twin of the Sado Bridge, tuned with 

experimental data acquired from a SHM system installed on site, in order to test and 

validate the efficiency of the proposed procedure. The strategy proved to be robust 

when detecting a comprehensive set of damage scenarios. Moreover, it showed 

sensitivity to early damage levels, even when it consists of small stiffness reductions 

that do not impair structural safety. 
 

Keywords: Structural Health Monitoring, Damage detection, Artificial Intelligence, 

Train-induced dynamic responses, Railway Bridges. 
 

1  Introduction 
 

Structural health monitoring (SHM) represents a promising strategy in the ongoing 

challenge of achieving sustainable infrastructural systems since it has the potential to 

identify structural damage before it becomes critical, enabling early preventive actions 

to be taken to minimize costs [1]. A combination of damage assessment technologies 

is necessary, and new developments in SHM aim at covering as many structures as 

possible at a reasonable cost. Although most bridges are already monitored using 

sophisticated measurement systems employing hundreds of sensors, there is a lack of 

efficient interpretation of the results provided, with frequent difficulty in detecting 

early damage. Thus, there is a need for data interpretation techniques that provide 

reliable information to assist engineers in structural management. It is crucial to devise 

robust online SHM systems that allow structures to be designed and operated safely, 

without extended downtime periods associated with additional inspection or 

maintenance. Also, it is important to develop unsupervised SHM systems that can be 

used in any geometry and that can detect damage in old structures, which already have 

a changed structural condition, to support the decision making process related to 

maintenance strategies.  
 

Despite widespread research in this field, up to this date the majority of 

applications is either based on static responses or ambient vibration [2-4]. Measuring 

static responses to generate health data cannot characterize the dynamic response, 

which often has its own unique and sensitive correlations to some kinds of damage. 

On the other hand, ambient vibration analyses are typically based on small-magnitude 

responses that do not provide local damage-sensitive information or fail to excite 

nonlinearities where the damage might be more observable. 
 

Transient signals generated by traffic have not been used efficiently and robustly 

for damage detection in railway infrastructures. While such large responses induced 

by trains might create more damage-sensitive information in the measured response, 

it also amplifies the effects on those measurements from the environment. The unique 

combination of moving-loads imposed to these structures during short periods can 

thus be considered an advantage if appropriate analyses are undertaken [5]. 
 

In this context, this work exploits unsupervised artificial intelligence (AI)-based 

SHM to propose a continuous online procedure for damage detection based on train-

induced dynamic bridge responses, taking advantage of the large-magnitude loading 
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for enhancing sensitivity to small scale damages. The focus is placed on ensuring 

robustness and efficiency implementing a hybrid combination of time series analysis 

methods and multivariate statistical techniques. 
 

2  Methods 
 

The proposed AI-based SHM strategy for early damage detection aims at being 

generic and robust enough to be applied to any type of railway bridges. A schematic 

representation of this procedure is depicted in Figure 1. A bowstring railway bridge 

was selected as case study, and a continuous monitoring system comprising 23 

accelerometers installed at the top of each pier, in the concrete slab, and in the steel 

box girder was installed. To accomplish a fully autonomous and real-time monitoring 

system, a process involving moving windows was implemented. Within each window, 

an AI strategy composed by the following four steps is implemented: 1) feature 

extraction accomplished by fitting autoregressive models with exogenous inputs 

(ARX) to the accelerations acquired; 2) feature modelling, performed to reduce the 

influence of environmental and operational variations (EOVs) by applying Principal 

Component Analysis (PCA); 3) data fusion to enhance sensitivity by implementing a 

Mahalanobis distance (MD) and 4) feature classification by performing cluster 

analyses.  
 

 
 

Figure 1: AI-based SHM strategy for early damage detection. 
 

 The moving window online procedure, detailed in Figure 2, is divided into three 

main stages: i) the confidence boundary (CB) build, ii) the baseline coefficients and 

iii) the online damage detection. 
 

After defining the total number of trains crossings, j, that compose the baseline, 

and the number of trains crossings within each window, the AI strategy is applied in 

stage 1A. At the end of this stage, the baseline average distance between clusters (DC) 

vector is achieved and used to estimate the CB. The purpose of stage 1B is to compute 

baseline PCA coefficients and baseline covariance and mean matrices for j trains 

crossings. During the second stage, the moving windows process is implemented in 

real time. Here, after extracting the ARX parameters, the baseline PCA transformation 
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is obtained, and the baseline covariance and mean matrices achieved in stage 1B are 

used for feature fusion. The corresponding damage sensitive distances are used as 

inputs for clustering. The outcome of the windowing process consists of one DC value 

per window i, and the detection is based on comparing each of these values with the 

CB. A DC lower than CB suggests that the structure may be assumed to be unchanged 

during that window. Conversely, a DC higher than the CB suggests the occurrence of 

damage during the same period. In the case of damage detection, after j train crossings 

a new baseline may be defined, which will allow identifying when a new type of 

damage occur.  
   

 
 

Figure 2: Moving window online procedure for damage detection. 

 

3  Results 
 

To test and validate the strategies proposed herein, a digital-twin of the bridge was 

implemented to perform a realistic comprehensive simulation of healthy and damage 

scenarios, since it was not possible to simulate damage scenarios experimentally [6]. 

The simulations of the baseline (undamaged) condition aimed at reproducing the 
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responses of the bridge taking into account the variability of temperature, speed, 

loading schemes and type of train. Damage severities of 5%, 10% and 20% stiffness 

reductions in the concrete slab, diaphragm, and arches were simulated, as well as 

friction increases in the movements of the bearings. To obtain the most reliable 

reproduction of the real SHM data, the noise measured on site by each accelerometer 

was added to the corresponding numerical output. 
 

The stage 1A of the methodology, which concerns defining the CB, was 

implemented for a significance level of 1% and for � = 100 trains. Figure 3 shows the 

CB defined for undamaged structural responses under different environmental and 

operational conditions. The DC series shown in Figure 4 as examples were obtained 

during the implementation of stage 2 for 100 healthy structural conditions and for 4 

types of damage: i) D1 located in the bearings; ii) D2 located in the first mid-span of 

the concrete slab; iii) D3 located in the diaphragm; and iv) D4 located in the arch. For 

both stage 1A and stage 2, moving windows with 15 trains and the responses of all 

sensors installed on site were considered. The effectiveness of the online procedure to 

detect different types of damage with different severities is shown in Figure 4, since 

for each type of damage, each symbol represents a different severity, increasing from 

left to right. 
 

In case a specific type of damage occurs, it is desirable for the CB to adapt in order 

to detect future damage that may arise over time. Figure 5 shows an application of CB 

progression, where it is shown the effectiveness of the proposed adaptive CB in 

automatically detecting new types of damage. 
 

 
 

Figure 3: Stage 1A of the procedure: CB build. 
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Figure 4: Stage 2 of the procedure: DC values obtained for 100 healthy scenarios 

and 4 types of damages with different severities. 
 

 
 

Figure 5: Adaptive CB for different types of damage: a) undamaged vs D1, b) D1 vs 

D2, c) D2 vs D3 and d) D3 vs D4. 
 

 

4  Conclusions and Contributions 
 

This paper presents a comprehensive SHM procedure for conducting continuous 

online damage detection, using train-induced dynamic responses, integrating several 

algorithms that address detection, EOVs, and online, autonomous classification. The 

unsupervised AI strategy proposed includes the sequential application of ARX 
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models, PCA transformation, and clustering algorithms to the observed data, using a 

moving window procedure. This strategy also includes an innovative approach to 

define an adaptive confidence boundary, which can be automatically updated to detect 

new damage that would progressively occur. 
 

The following conclusions can be drawn from the research work herein presented: 

 The performed time-series analysis showed to be able of accurately generalize 

the information present in data, while performing significant compressive 

fusion. 

 The importance of feature modelling was demonstrated, when the effects of 

EOVs were considerably reduced without the features losing sensitivity to 

damage.  

 The results strongly suggest that the proposed methodology is, in fact, robust 

and may be used for damage detection throughout the entire structural system. 

 Changes as small as 5% of stiffness reduction may be detected. 

 Finally, using several train-induced responses from the bridge comprising 

progressively different types of damage, the effectiveness of an original 

adaptive CB in detecting new structural changes that may occur in a structure 

already damaged was successfully demonstrated. Also, the procedure proved 

to be robust in avowing false damage alerts. 
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