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Abstract 
 

Multi-layered composite and sandwich plates are increasingly being used in structures 

of aerospace, marine, civil and automotive areas. Each can exhibit anisotropic 

behaviour and drastically varying transverse shear flexibility. Such highly 

heterogeneous cross-sections show a significant deviation from the kinematic 

hypothesis that is usually applied in classical plate theories. With the recently 

presented enhanced Refined Zigzag Theory (en-RZT) it is possible to model the 

specific warping effects that occur in shear-elastic cross-ply or angle-ply laminates. 

By expanding the kinematic equations with to so-called von Karman terms the 

geometric stiffness matrix is derived, and linear buckling applications are verified. 

The triangular, C0-continuous element, originally introduced by Tessler and extended 

by Versino, has seven degrees of freedom per node. It shows good convergence and 

accuracy in thick and thin configurations. 
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1  Introduction 
 

Multi-layered composite and sandwich plates are increasingly being used in structures 

of aerospace, marine, civil and automotive areas. Since each individual layer is to 

perform a specific function, different materials are used, most of which can exhibit 

anisotropic behaviour and drastically varying transverse shear flexibility. Such highly 

heterogeneous cross-sections show a significant deviation from the kinematic 

hypothesis that is usually applied in classical plate theories such as that of Kirchhoff 

or Reissner/Mindlin [1]. To model cross-sectional distortions higher-order single-

layer theories or layer-wise theories have been devised. The former does not always 

deliver sufficiently good results, while the latter involves a great deal of numerical 

effort.  A good compromise between accuracy and effort is provided by so-called 

zigzag theories [2]. One of them, the so-called Refined Zigzag Theory (RZT) 

published by Tessler/Di Sciuva/Gherlone [3] is a very robust and efficient model that 

uses the five global kinematic variables of the FSDT supplemented by two local 

variables (zigzag rotations) which control the layer-wise linear zigzag functions for 

the in-plane deformations. Recently Sorrenti/Di Sciuva [4] generalised the kinematics 

by two local warping functions (coupling terms), to predict the specific deformation 

phenomena that occur when dealing with angle-ply multi-layered composite plates.  

This newly developed model is named enhanced RZT (en-RZT). In this paper, the 

kinematic equations are expanded with the so-called von Karman terms leading to a 

geometrically non-linear version. From here the linear buckling equation can be 

extracted when neglecting the initial deformations. 
 

In the present approach a triangular finite element, presented by Versino [5] is used, 

which employs linear shape functions for all seven nodal degrees of freedom, except 

for the transverse deflection where an anisoparametric interpolation is used to prevent 

shear locking. The implemented element shows good convergence and accuracy in 

thick and thin configurations.  
 

 

2  Methods 
 

We consider a laminated composite plate, embedded in three-dimensional space 

spanned by the global orthogonal Cartesian coordinate system 𝑥𝑖(𝑖 = 1, 2, 3). The 

plate has a constant thickness ℎ in the local direction 𝑥3 = 𝑧,  its mid-plane coincides 

with the plane 𝒙𝛼(𝛼 = 1, 2), as seen in Figure 1. 

 

 𝑢1
(𝑘)(𝒙, 𝑧) = 𝑢(𝒙) + 𝑧. 𝜃1(𝒙) + 𝜙11

(𝑘)(𝑧). 𝜓1(𝒙) + 𝜙12
(𝑘)(𝑧). 𝜓2(𝒙) 

𝑢2
(𝑘)(𝒙, 𝑧) = 𝑣(𝒙) + 𝑧. 𝜃2(𝒙) + 𝜙21

(𝑘)(𝑧). 𝜓1(𝒙) + 𝜙22
(𝑘)(𝑧). 𝜓2(𝒙) 

           𝑢3
(𝑘)(𝒙, 𝑧) = 𝑤(𝒙)                                          (1) 

 

In Eq. (1) 𝑢, 𝑣, 𝑤 are the global in-plane and out-of-plane displacements of the 

reference plane,  𝜃𝛽(𝒙𝛼), (𝛼, 𝛽 = 1, 2) denote the global rotations about the 

coordinate directions 𝒙𝛼 of the reference plane and 𝜓𝛽(𝒙𝛼) represent the local zigzag 

rotations, which control the zigzag-pattern in the cross section. The mentioned 
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The transverse shear strains 

 

𝑬𝑡
(𝑘) = 𝑬𝑡

(0) +𝚽𝑡,𝑧
(𝑘)(𝑧)𝝍 = 𝑬𝑡

(0) + 𝜷(𝑘)𝝍                     (5) 

 

split into a constant averaged shear part and layer-dependent part give 

 

𝑬𝑡
(0) = 𝜸𝑡

(0) = {
𝛾1
(0)

𝛾2
(0)
} = {

𝑤,1 + 𝜃1
𝑤,2 + 𝜃2

} ,         𝝍 = {
𝜓1
𝜓2
}                 (6a, b) 

 

𝚽𝑡
(𝑘) = [

𝜙11
(𝑘) 𝜙12

(𝑘)

𝜙21
(𝑘) 𝜙22

(𝑘)
]                                     (7) 

 

𝜷(𝑘) =
𝜕

𝜕𝑧
𝚽𝑡
(𝑘) = [

𝛽11
(𝑘) 𝛽12

(𝑘)

𝛽21
(𝑘) 𝛽22

(𝑘)
]                             (8) 

 

According to the assumption of plane stress state (𝑆33 = 0), these strains are 

connected by the elastic Hookean law with the corresponding second Piola-Kirchhoff 

stress quantities. 

 

        𝑺𝑝
(𝑘) = {

𝑆11
𝑆22
𝑆12

}

(𝑘)

= �̅�𝑝𝑬𝑝
(𝑘)

,           𝑺𝑡
(𝑘) = {

𝑆13
𝑆23
}
(𝑘)

= �̅�𝑡𝑬𝑡
(𝑘)

             (9a, b) 

 

The matrices �̅� contain the transformed plane stress-reduced stiffness coefficients 

[1]. 

         �̅�𝑝
(𝑘) = [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

(𝑘)

,       �̅�𝑡
(𝑘) = [

�̅�44 �̅�45
�̅�45 �̅�55

]

(𝑘)

                  (10a, b) 

 

To establish the discretized problem the principle of virtual work says 

 

     𝛿𝑊𝑖𝑛𝑡 − 𝛿𝑊𝑒𝑥𝑡 = 0                                                   (11) 

 

In detail, it reads 

 

     𝛿𝑊𝑖𝑛𝑡 = ∫𝛿𝑬𝑝
𝑇𝑺𝑝 𝑑𝑉 + ∫𝛿𝑬𝑡

𝑇𝑺𝑡 𝑑𝑉                                 (12) 

 

Integration over the thickness of the first part leads to 

 

𝛿𝑊𝑖𝑛𝑡 = ∫𝛿𝑬𝑝
𝑇𝑹𝑝 𝑑𝐴 + ∫𝛿𝑬𝑡

𝑇𝑹𝑡 𝑑𝐴                                 (13) 

 

with the second Piola-Kirchhoff-stress resultants 
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𝑹𝑝 = {

𝑵
𝑴
𝑴𝜙

} ,       𝑹𝑡 = {
𝑻
𝑻𝜙
}                                           (14) 

 

Their components are defined by 

(𝑵,𝑴,𝑴(𝝓)) =

(

  
 
{
𝑁11
𝑁22
𝑁12

} , {
𝑀11
𝑀22

𝑀12

} ,

{
 
 

 
 𝑀11

(𝜙)

𝑀22
(𝜙)

𝑀12
(𝜙)

𝑀21
(𝜙)
}
 
 

 
 

)

  
 
= ∫ (1, 𝑧,𝚽𝑝

(𝑘)𝑇(𝑧)) 𝑺𝑝
(𝑘)𝑑𝑧

+
ℎ

2

−
ℎ

2

     (15a) 

 

(𝑻, 𝑻(𝝓)) = ({
𝑇1
𝑇2
} , {
𝑇1
(𝜙)

𝑇2
(𝜙)
}) = ∫ (1, 𝜷(𝑘))𝑺𝑡

(𝑘)𝑑𝑧
+
ℎ

2

−
ℎ

2

                  (15b) 

 

For the FE discretization, we define 𝒇𝑖𝑛𝑡 and 𝒇𝑒𝑥𝑡 as the nodal vectors of the internal 

and external forces. Starting from the static equilibrium equation  
 

𝒇𝑖𝑛𝑡 − 𝒇𝑒𝑥𝑡 = 𝟎                                                         (16) 

 

the tangent stiffness matrix is obtained by 

 

 𝑲𝑇 =
𝜕𝒇𝑖𝑛𝑡

𝜕𝒖(𝑒)
=

𝜕

𝜕𝒖(𝑒)
∫ 𝑩𝑻
𝑉

𝑺𝑑𝑉 = ∫ 𝑩𝑻
𝜕𝑺

𝜕𝑬𝑉

𝜕𝑬

𝜕𝒖(𝑒)
𝑑𝑉 + ∫

𝜕𝑩𝑻

𝜕𝒖(𝑒)𝑉
𝑺𝑑𝑉 =      

 = ∫ 𝑩𝑻𝑪
𝑉

𝑩𝑑𝑉 + 𝑲𝐺                                           (17) 

 

where 𝒖(𝑒)𝑇 = [𝑢, 𝑣, 𝑤, 𝜃1, 𝜃2, 𝜓1, 𝜓2]𝑖, (𝑖 = 1, 2, 3) stands for the element 

displacement vector.  The stability problem then appears as a linear eigenvalue 

problem with 𝑲𝐿 as the linear stiffness matrix and the eigenvalue 𝜆 as a load-

increasing factor concerning the initial stress state to produce the bifurcation limit of 

static equilibrium. 

 
(𝑲𝐿 + 𝜆 𝑲𝐺) 𝒖 = 𝟎                                            (18) 

 

For details concerning the shape functions and the matrices see [5-8]. 

 

3  Results 
 

As a first example the bending-stretching coupling effect of a two-layered thin strip 

in tension is investigated. The thin strip has a ratio a1/a2 = 400/100 mm and two layers 

with thickness t1 = 1.6 mm each, in angle-ply (45°) configuration. The strip is loaded 

by uniaxial tension q1 = 100 N/mm. The material data are as follows:  E1 = 31100 

N/mm2, E2 = E3 = 7600 N/mm2, G12 = G13 = 2900 N/mm2, G23 = 2600 N/mm2, 12 = 

13 = 0.303, 23 = 0.462. The left and right edge, where the line loads are acting in 

opposite directions, is fixed (𝑣 = 𝑤 = 0).           
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a1/h [°] a1/a2 

  0.50 1.00 

  [11] [5] FEM 

2D 

(A) 

FEM 

2D 

(B) 

FEM 

3D 

(B) 

[11] [5] FEM 

2D 

(A) 

FEM 

2D 

(B) 

FEM 

3D 

(B) 

50 30 0.938 0.944 0.947 0.930 0.904 1.939 1.959 1.965 1.871 1.771 

45 0.719 0.723 0.726 0.695 0.674 2.174 2.199 2.207 2.052 1.937 

60 0.450 0.453 0.454 0.435 0.420 1.939 1.959 1.785 1.680 1.576 

 

Table 2: Critical buckling stress (in N/mm2) for uniaxial compressive load, simply 

supported on all edges and a1/h = 50. Values above must be divided by 100. 

 

a1/h [°] a1/a2 = 2.00 

  [11] [5] FEM 

2D (A) 

FEM 

2D (B) 

FEM 

3D (B) 
50 30 6.927 7.057 7.075 6.425 5.979 

45 10.93 11.20 8.330 7.395 6.752 

60 14.16 14.52 6.440 5.780 5.212 

 

Table 3: Critical buckling stress (in N/mm2) for uniaxial compressive load, simply 

supported on all edges and a1/h = 50. Values above must be divided by 100. 

 
 

4  Conclusions and Contributions 
 

The Refined Zigzag Theory is a powerful and reliable theory for the accurate detection 

of stresses and deformations of shear-elastic, cross-ply laminated plates. In the 

recently presented enhanced version, it can deal with angle-ply plates in which two 

adjacent laminae have alternating orientations, but the same absolute value. In this 

contribution, the performance of a simple triangular plate element is illuminated for 

the linear bending and buckling case of such plates. The results match well with the 

few values given in the literature. Certain differences make further investigations 

necessary. 
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