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Abstract 
 

This paper presents an efficient parallel implementation of topology optimization of 
continuum structures considering the local loss of stiffness due to material failure. 
Considering such a loss of stiffness, we can obtain operable designs after faults, 
providing fail-safe structural designs minimizing safety risks. We use a local model 
of failure removing the material stiffness in patches with a fixed shape, whereas we 
consider the damage scenarios using a Kreisselmeier-Steinhauser (KS) function to 
approximate the non-differentiable max-operator in the min-max formulation of the 
optimization problem minimizing the worst-case performance. The analysis of 
continuum structures using this fail-safe formulation is a computational challenge due 
to the need for solving as many finite element problems as damage scenarios. We 
solve such damage scenarios using a distributed memory conjugate gradient solver 
preconditioned by an algebraic multigrid (AMG) method. Inter-node communications 
drastically deteriorate the solver performance due to network latency. Thus, we 
propose a two-level parallel processing scheme using intra-node communications for 
solving the damage scenarios and inter-node communications for computing the 
approximation of the min-max formulation avoiding bandwidth problems. We 
evaluate the performance and scalability of the proposed methodology showing good 
performance and scalability. 
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1  Introduction 
 

Topology optimization aims to find the optimal distribution of material within a 
design domain by minimizing a cost function subjected to a set of constraints. It is a 
powerful tool for engineers and scientists providing innovative and high-performance 
conceptual designs at the early stages of the design process without assuming any 
prior structural configuration. However, these designs often resemble a statically 
determined structure in the minimum compliance problem for solid mechanics [1], 
being very sensitive to local failures due to the lack of redundancy. Fail-safe design 
philosophy allows us to obtain structural designs operable after faults minimizing 
safety risks [2]. 

Topology optimization of fail-safe structures presents serious computational 
challenges even for academic problems. We use a local model of failure removing the 
material stiffness in patches with a fixed shape, whereas we consider the damage 
scenarios using a Kreisselmeier-Steinhauser (KS) function to approximate the non-
differentiable min-max formulation of the optimization problem minimizing the 
worst-case performance. We have to perform as many finite element analyses (FEA) 
as damage scenarios for each topology optimization iteration. Therefore, the total 
number of FEAs for obtaining the fail-safe design can be considerably high. Besides, 
the intensive use of inter-node communications can degrade significantly the 
performance of the iterative solver in distributed memory computing systems [3, 4]. 
We propose a two-level parallel scheme for the efficient analysis of the damage 
scenarios considering the topology of the network. We create a per-node 
communicator for intra-node communications and an inter-node communicator for 
sharing the required information between the subdomains of the computing nodes. 
The proposal allows us to avoid bandwidth problems degrading the performance and 
the efficient use of the computational resources available for solving the fail-safe 
problems. 

The paper is organized as follows. We devote section 2 to the presentation of the 
basis and theoretical background of the fail-safe approach. Section 3 shows the results 
using the proposal scheme. Finally, section 4 presents the conclusion and contribution 
of the presented work. 

 
2  Methods 
 

We adopt the density-based approach to describe the material distribution in the 
minimum compliance topology optimization problem. In particular, we use the 
formulation of the Solid Isotropic Material with Penalization (SIMP) method, where 
the design variables 0 < ρ ≤ 1 are the densities penalizing Young’s moduli of finite 
elements as follows 
 

𝐸 ൌ 𝐸  ሺ𝐸 െ 𝐸ሻ ⋅ 𝜌~̄,          (1) 
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where p>1 is the penalization power, E0 and Emin are Young’s modulus of stiff and 
soft material, respectively, and𝜌~̄is the regularized and projected density using the 
density filter and the parametrized projection function proposed by Xu et al. [5]. 
  
Following [1], we model the local material failure modifying the stiffness as 

𝐸
 ൌ ቊ

𝐸     𝑖𝑓𝑒 ∈  𝛺 ∖ 𝑃

𝐸  𝑖𝑓𝑒 ∈  𝑃 ,          (2) 

 
where𝑃 ∈ 𝛺is the patch modeling the material failure as shown in the red bounding 
boxes of Figure 1.  
  
Assuming that the uncertainty related to the occurrence of local failures can be 
represented by an appropriate set of N patch removal scenarios, we formulate the 
topology optimization of fail-safe structures as a scenario-based problem where every 
instance of local failure is included as a worst-case formulation of minimum 
compliance as follows: 
 

𝑚𝑖𝑛ఘ~̄   𝑓ሺ𝜌~̄ሻ ൌ 𝑚𝑎𝑥ୀଵ,...,ே𝑓ሺ𝜌~̄ሻ ൌ 𝑚𝑎𝑥ୀଵ,...,ே𝐹்𝑈ሺ𝜌~̄ሻ

𝑠. 𝑡.    𝐾൫𝜌~̄∨ 𝐸൯𝑈ሺ𝜌~̄ሻ ൌ 𝐹
           𝑉ሺ𝜌~̄ሻ ൏ 𝑉், 𝜌~̄ ∈  ሾ0,1ሿ

,     (3) 

 
 where VT is the target volume. 
 Due to the problem (3) is non-differentiable, we approximate the max-operator in 
the objective function by the KS function as follows: 
 

𝑚𝑖𝑛ఘ~̄   𝑓~ሺ𝜌~̄ሻ ൌ 𝑙𝑜𝑔 ቀ∑ 𝑒ఊሺఘ~̄ሻቁ 𝛾

𝑠. 𝑡.    𝐾൫𝜌~̄∨ 𝐸൯𝑈ሺ𝜌~̄ሻ ൌ 𝐹
           𝑉ሺ𝜌~̄ሻ ൏ 𝑉், 𝜌~̄ ∈  ሾ0,1ሿ

,     (4) 

 
 where 𝛾is a regularization parameter in the KS. 
  
 
Figure 1 shows the flowchart of the proposed parallel approach. We divide the 
problem into several subdomains to calculate the recursive stages of the topology 
optimization method. We use computing buffers to perform the FEA considering the 
damage scenarios. These buffers provide flexibility to the implementation allowing 
us to decouple the resources and the problem to solve [6]. We have to remark that the 
computing buffers only use the computational resources of their node. This 
computation grouping the threads in the physical node ensures that the FEA only use 
intra-node communications, which are much faster than inter-node communications 
using Ethernet/Infiniband. We perform the rest of the computation using the master 
node, including regularization filter, density projection, sensitivity calculation, and 
density update using MMA. 
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Figure 1: Flowchart of the distributed density-based topology optimization of fail-
safe structures. 

 

 We also adopt the two-level parallelization scheme proposed in [7]. Such a 
parallelization scheme groups MPI communication for solving FEAs, and then 
minimizes communications by only sharing information between subdomains for 
computing the objective function. We use this scheme groping the computing threads 
into physical nodes. The underline idea is to minimize the use of inter-node 
communications. Figure 2 shows the MPI communication groups minimizing the 
communications between physical nodes. 
 
3  Results 
 

We evaluate the benefits and limitations of the proposed parallel implementation of 
density-based topology optimization for fail-safe structural designs. We use the 
cantilever experiment shown in Figure 3(a) for the evaluation, where we can find the 
geometric configuration, boundary conditions, and the set of damage cases. We model 
the uncertainty related to the occurrence of local failures using the set of N=10 
removing material patches (red bounding boxes). We configure such fail cases 
allowing load paths between the application of forces and the nodes with restricted 
motion. 
 
We use a mesh of 1920x640 quad elements giving rise to a system of equations of 
2462722x2462722 unknowns for the FEA of the damage cases. We use a radius of 
3.5 times the width of the quad elements for regularizing the density field using the 
density filter. We use E0=1 and Emin=10-9 for the material penalization of Young’s 
modulus of stiff and soft material and p=3 for the penalization power of (1). We use 
an algebraic multigrid (AMG) for preconditioning the distributed conjugate gradient 
solver. The AMG preconditioner uses a strength threshold of 0.5 for the coarsening, 
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a null truncation factor for constructing the interpolation operator, and an HMIS 
algorithm for parallel coarsening. 
 

 
Figure 2: Two-level parallel approach for topology optimization of fail-safe 

structures. 
 
We run the experiment using the AMD Rome nodes of the French TGCC (Très Grand 
Centre de Calcul) supercomputer infrastructure at CEA (Commissariat à l’Énergie 
Atomique).  Such a supercomputing infrastructure has the partition Rome for regular 
computation with 2292 nodes with 2x64 AMD Rome@2.6Ghz (AVX2) and up to 
256GB of RAM per node. The computing nodes are connected through an EDR 
InfiniBand network in a pruned FAT tree topology. This high throughput (100GB/s) 
and low latency network are used for I/O and communications among nodes of the 
supercomputer. 
 
We evaluate the strong scaling for the cantilever experiment using different 
computational resources. Figure 3(b) shows the final fail-safe design of the cantilever 
experiment configuring the set of local failures specified in Figure 3(a). We run 300 
iterations of the topology optimization approach showing the evolution of the 
objective function in Figure 4(a). We use a different number of nodes to solve the 
topology optimization of fail-safe structures. In particular, we solve the fail-safe 
cantilever experiment using one, four, five, and ten computing nodes. Figure 4(b) 
shows the wall-clock time for the topology optimization of fail-safe structures using 
different resources. We can observe that we obtain a significant benefit incorporating 
new computing nodes with the proposed approach. 
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(a)

         
(b)

 

Figure 3: Cantilever experiment: (a) geometric configuration, boundary conditions, 
and patch removal configuration (red bounding boxes), and (b) fail-safe design 

structural design. 
 
 
 

(a) (b) 
 
 

 
Figure 4: Cantilever experiment: (a) geometric configuration, boundary conditions, 
and patch removal configuration 
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4  Conclusions and Contributions 
 

We have presented an efficient parallel implementation of topology optimization of 
continuum structures for fail-safe design. Assuming the simplified local damage 
model of [1], we introduce a two-level parallelization scheme considering the 
topology network. The underline idea is minimizing inter-node communications using 
Ethernet-Infiniband, which degrades the computing performance due to network 
latency. We achieve this goal by grouping the computational nodes by the criteria of 
the tasks in which they are required. Besides, we increase the flexibility and 
adaptability of the framework using the computational nodes as computing buffers to 
perform the FEA considering the damage scenarios. This scheme allows us to 
decouple the distributed implementation of the topology optimization problem of fail-
safe structures. We evaluate the performance and scalability of the proposal using 
different computational resources. In particular, we use a different number of 
computing cores and distributed computing hosts, showing good performance and 
scalability for up to ten computing nodes and hundreds of computing threads. 
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