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M. Šejnoha

Department of Mechanics, Faculty of Civil Engineering
Czech Technical University in Prague, Czechia

Abstract

This paper is concerned with a theoretical description of a polyvinyl butyral (PVB)
foil, which is commonly used as an interlayer of laminated-glass composites. This
polymer exhibits a significant time and temperature-dependent behaviour and can be
effectively described employing the theory of viscoelasticity. The present study con-
centrated on the ability of both standard and fractional Maxwell chain models to rep-
resent the polymer behavior observed experimentally. Both models were calibrated
adopting the same set of laboratory data derived with the help of a dynamic shear
rheometer for the selected range of frequencies and temperatures. The time temper-
atures superposition principal was exploited to extend the data beyond the allowable
frequency range. The optimal model parameters were then obtained by matching the
measured and theoretically predicted response of the polymer in the framework of
least squares method. We have seen that the model based on fractional calculus not
only requires less number of model parameters but it also provides predictions which
are closer to a real behavior of the examined polymer. This promotes its application
in smoothing the measured data and consequently allows us to extend the measured
domain with a relatively low number of model parameters.

Keywords: viscoelasticity, fractional viscoelasticity, Maxwell chain model, lami-
nated glass, polymer interlayer, PVB foil, rheometer experiment
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1 Introduction

The concept of linear small-strain elasticity assumes that the stress σ is proportional
to the strain ε, i.e. σ = Eε. Similarly, in the case of a pure viscous material, the stress
is proportional to the strain rate, i.e. σ = ηε̇, where constants E and η are material
parameters. Because the response of a viscoelastic material is found somewhere in
between, it seems natural to generalize this relationship by stating that the stress is
directly proportional to the α-derivative of strain, where α ∈ R. This technique is not
common in engineering practice, but for many materials it is more natural and gives
better results.

In this contribution, we therefore focus on the applicability of fractional calculus
in viscoelasticity with particular application to a polymer interlayer in a laminated
glass. Laminated glass is a modern widely used material, where a proper description
of the behavior of the interlayer plays a crucial role in a reliable prediction of the
behavior of the entire laminate. It has been observed that the approach exploiting
fractional calculus allows for a correct description of a gradual creep at long times
as well as it provides a correct estimate of dissipated energy in faster processes. A
classical rheological formulation is not so flexible in simultaneously describing fast
and slow events. Thus to describe an entire life cycle of a material requires using a
large number of rheological cells. The fractional model is much more flexible and
natural in this regard. This will be presented in light of a calibration step of a standard
and fractional Maxwell chain model to represent experimental data acquired from a
rheometer test.

The theoretical background of fractional calculus is briefly described in Section 2
whereas a short note on the performed laboratory measurements is provided in Sec-
tion 3. The measured data, summarized in Section 4, are subsequently adopted in
the calibration step addressed in Sections 5 and 6. The essential outcomes are finally
discussed in Section 7.

2 Fractional viscoelasticity

In fractional viscoelasticity the viscous behavior is represented by a springpot element,
see ahead Fig. 6(b), which relates the stress to the strain rate in the form

σ(t) = ξDαε(t), (1)

where α and ξ are parameters of the model and Dα is a noninteger derivative. Two
limit cases can be defined to arrive either at a spring element with ξ representing the
Young modulus E when setting α = 0 or at a dashpot element with α = 1 to associate
ξ with the viscosity η. An auxiliary ratio τ = η/E is called the characteristic time.
With this parameter it becomes profitable to write the stress-strain relation (1) as

σ(t) = EταDαε(t), (2)
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which directly leads to the above mentioned limit cases, see [4] for more details.
An underlying principle of fractional integration is a generalization of the Cauchy

formula for repeated integration

Jnf(t) =
1

(n− 1)!

∫ t

0

(t− t′)n−1f(t′) dt′, n ∈ N,

where Jn denotes the integration of the order of n. The gamma function Γ allows us
to move to a space of real numbers R to get

Jαf(t) =
1

Γ(α)

∫ t

0

(t− t′)α−1f(t′) dt′, α ∈ R.

The definition of α-th derivative is typically based on the definition of fractional inte-
gral Jα. The two commonly used formulations, which provide identical results, are:

Riemann-Liouville fractional derivative is defined as

Dα
RLf(t) = D⌈α⌉J⌈α⌉−αf(t), (3)

where Dn denotes n-th differentiation and ⌈•⌉ is the ceiling function. For example, if
we wish to differentiate a function f(t) 0.8 times, we first integrate this function 0.2
times and after that we take the first derivative of the result, which is mathematically
written as

D0.8f(t) = D1J0.2f(t). (4)

Caputo fractional derivative is defined in the same way, only the order of differ-
entiation and integration is reversed, i.e.,

Dα
Cf(t) = J⌈α⌉−αD⌈α⌉f(t), (5)

which, for the above example, gives

D0.8f(t) = J0.2D1f(t). (6)

3 Experimental analysis of PVB foil

In the present study we limit our attention to a PVB (polyvinyl butyral) polymer in-
terlayer as the most typical interlayer used in laminated glasses. Apart from ensuring
interaction of individual glass plates it also dissipates a portion of energy when sub-
jected, e.g., to impact or blast loading. For the laminated glass element in bending
the interlayer is loaded mostly in shear. Obtaining shear properties of a material ex-
perimentally can be accomplished for example via a dynamic shear rheometer. By
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Figure 1: Dynamic shear rheometer Malvern KINEXUS
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Figure 2: Parallel-plate rheometer with attached sample – (a) scheme, (b) photograph

loading the material in a simple torsion this device allows for determining both elastic
and viscous properties.

The Malvern KINEXUS DSR+ rheometer adopted in our study is displayed Fig. 1.
It utilizes a parallel-plate geometry schematically plotted in Fig. 2 (a). Figure 2 (b)
shows the photograph of the same configuration. The sample is attached between the
two parallel plates. The upper plate, termed adapter, can move along and rotate around
the vertical axis perpendicular to the plate. The bottom plate, called stator, is fixed.
The torsional load is introduced to a sample via rotation of the adapter. The loading
process can be controlled either by the shear stress or by the shear strain and the
rheometer can perform static loading (e.g. the creep test) or the dynamic loading. An
application of a dynamic rheometer apparatus to laminated glass samples is presented
in [1]. In the present study, however, the load is introduced directly to the polymer foil
as also seen in Fig. 2 (b).
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The sample is loaded by a harmonic (sinusoidal) strain while the stress response is
monitored by the rheometer. The software then extracts the values of amplitudes of
the strain γ0 and the stress τ0 and the phase shift δ between the load and the response.
These values are converted into the required outputs – the storage modulus G′, the loss
modulus G′′, and the complex modulus G∗. These moduli are given by

G′(ω) =
τ0
γ0

cos δ,

G′′(ω) =
τ0
γ0

sin δ,

G∗(ω) = G′(ω) + iG′′(ω).

(7)

The rheometer outputs are based on the known diameter of the rheometer plates d
and the gap between the plates, which corresponds to the thickness of the sample h.
The rheometer software assumes that the sample is perfectly filling the gap between
the plates as is shown in Fig. 2 (a), i.e., the same diameter d = 25 mm of the sample
and of the plates is considered and the sample is homogeneous over its height. Ma-
terial samples of two different thicknesses, 0.76 mm and 1.52 mm, were examined.
The samples were attached to the rheometer plates employing high temperature and
compressive force introduced by the adapter.

The dynamic moduli were determined via frequency sweep test with the prescribed
amplitude of shear strain equal to 0.1 %. The measurements were performed for
frequencies in the range of 0.01-100 Hz (approximately 0.0628-628) rad/s and for
multiple different temperatures in the range of 0-100 °C. Further details can be found
[2].

4 Results from rheometer

This section presents the storage and loss moduli obtained from the rheometer ex-
periment. The graphs in Fig. 3 show the results obtained for one measured sample,
specifically the 0.76 mm sample laminated at 140 °C. It is evident that for frequen-
cies over 200 rad/s (approximately 32 Hz) and under 0.2 rad/s (0.032 Hz) the results
are very volatile and unreliable. This is probably caused by meeting the limits of the
measuring device. This phenomenon was significant for every measurement. There-
fore, this range of frequencies was excluded from further analyses. These deviations
are even more pronounced for the loss modulus, see Fig. 3, especially for the results
obtained for temperatures under 20 °C. Figure 4 shows the average values of the ob-
tained moduli for both thicknesses of the tested material. The results clearly show the
frequency and temperature dependence of the storage and loss moduli.

When the results for the storage modulus are analysed, it is obvious that the values
of the modulus are higher for lower temperatures and vice versa. Therefore, the re-
sponse of the material is stiffer for lower temperatures and more compliant for higher
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Figure 3: Experimental results on 0.76 mm PVB foil laminated at 140 °C for (a) stor-
age modulus, (b) loss modulus

temperatures. This phenomena is mostly noticeable for temperatures between 20-
40 °C. For this temperature range we also see the most significant dependence on
frequency – for a rapid loading (high frequencies) the material is stiffer then for a
slow loading (low frequencies). For temperatures under 10 °C and around 60 °C the
frequency dependence is less significant which refers to a solid-like behaviour of the
material for these temperatures.

As for the loss modulus, we see that the frequency dependence is mostly noticeable
for temperatures between 20-40 °C as well. For other measured temperatures the re-
sults are almost constant over the selected frequency range. Temperature dependence
of the loss modulus is also important. However, for temperatures in the range of 60-
100 °C there is no significant difference and the values of the loss modulus are similar.
With decreasing temperature the loss modulus initially increases. Nevertheless, in the
range of temperatures between 0 and 10 °C we observe an opposite trend. The values
of the modulus in this temperature range are lower than for 20 °C and for some mea-
surements even for 30 °C, especially for higher frequencies. Because of this unclear
behaviour the following analysis is focused on the storage modulus only, while the
loss modulus measurements will require further research.

5 Time-temperature superposition principle

The time-temperature superposition principle assumes that the viscoelastic behaviour
examined for one temperature can be related to the behaviour for another temperature
when its timescale is changed [3]. In other words, from the set of measurements for
various temperatures we can establish one temperature as a reference TR and all of
the measurements results can be related to TR by changing their time (or, in our case,
frequency) domain.
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Figure 4: Average results for 0.76 mm and 1.52 mm PVB foil for (a) storage modulus,
(b) loss modulus

For example, we have the storage modulus G′ depending on frequency ω and tem-
perature T . The frequency and temperature can be tied by the shift factor αR related
to the reference temperature TR. Since the reference temperature is set, the shifted
function then depends only on frequency,

G′(ω, T ) → G′(αRω, TR). (8)

This result is then related to the reference temperature T ≡ TR and provides an exten-
sion of the measured range in the frequency domain. This extended curve for temper-
ature TR is called a mastercurve.

The shift is obtained by multiplying the original frequency range ω by the shift
factor αR which, in the logarithmic scale, results in a horizontal shift of the curve
only. The shift factor depends on the original temperature T and it can be obtained
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from the Williams-Landel-Ferry (WLF) equation in the form [3]

logαR(T ) =
−C1(T − TR)

C2 + T − TR
, (9)

where log denotes a decadic logarithm and C1, C2 are parameters that need to be
found for the specific set of results so the shifting provides the smoothest possible
mastercurve. The parameters are optimized based on the least squares method. The
optimization compares the data points corresponding to the different temperatures and
their deviations over the current overlapping region. If we have a set of measurements
for more than two temperatures the whole set is then described by the same WLF
equation and to find the optimal parameters C1, C2 all curves are exploited at once.
The optimization was performed using the fminbnd function in MATLAB.

An illustrative example of the mastercurve fitting is shown in Fig. 5 for the average
results measured on 1.52 mm sample. The grey dashed lines mark the measured fre-
quency domain where we see the originally measured data for various temperatures.
The data marked by × are shifted relative to the reference temperature TR = 20 °C
with the optimized parameters of WLF equation C1 = 14.7231, C2 = 120.7819 °C.
We see that the shift provides a significantly extended frequency domain.
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Figure 5: Example of mastercurve fitting

6 Approximation of the measured data

To appreciate a potential advantage of fractional calculus we compare approximation
of the measured data provided by the standard Maxwell chain model in Fig. 6(a) and
by the fractional Maxwell chain model in Fig. 6(b).
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Figure 6: (a) Standard Maxwell chain model, (b) Fractional Maxwell chain model

Mathematically, the storage modulus of the standard model is provide by

G′(ω) = G0 +
N∑
i=1

Giω
2τ 2ci

ω2τ 2ci + 1
, (10)

whereas the storage modulus associated with the fractional model reads

G′(ω) = G0 +
N∑
i=1

Gi

(τciω)
2αi + (τciω)

αi cos (αi
π
2
)

(τciω)2αi + 2(τciω)αi cos (αi
π
2
) + 1

, (11)

where N stands for the number of cells.
When constructing the standard model we considered one Maxwell cell per each

decade in the range of frequencies we wanted to describe. This suggested a 12-cells
model with the characteristic times τci set as

τci = 10j, j = {−5, −4, . . . , 6}, N = 12.

The remaining parameters, i.e., the moduli Gi of individual cells and the eleastic mod-
ulus G0, were then optimized exploiting again the experimentally obtained master-
curve in Fig. 5. The resulting parameters are summarized in Tab. 1. Ability of this
model to approximate the experimental data is shown in Fig. 7.

For the fractional model the characteristic times were also selected with respect to
the examined range of frequencies. The chosen values comply with the shape of the
experimentally observed mastercurve. In particular, they correspond to the frequen-
cies where the slope of the curve changes. The characteristic times τci were thus set
as

τci = 10j, j = {−1.5, 1, 5}, N = 3.
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Parameter Value Parameter Value
G0 0.04625 MPa G7 0.8527 MPa
G1 0.0263 MPa G8 4.1315 MPa
G2 0.09625 MPa G9 20.6808 MPa
G3 0.1266 MPa G10 9.743 MPa
G4 0.09871 MPa G11 15.327 MPa
G5 0.06262 MPa G12 18.5988 MPa
G6 3.534e-11 MPa

Table 1: Parameters of standard Maxwell chain – 1.52 mm sample, fitting
to experimental data
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Figure 7: Approximation of the data for 1.52 mm sample by 12-cells standard
Maxwell chain with model parameters according to Tab. 1

Parameter Value Parameter Value
G0 0.0416 MPa α1 0.6713
G1 50.1031 MPa α2 0.2161
G2 0.1563 MPa α3 0.5368
G3 0.3441 MPa

Table 2: Parameters of fractional Maxwell chain – 1.52 mm sample, fitting
to experimental data
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Figure 8: Mastercurve for 1.52 mm sample smoothed using 3-cells fractional Maxwell
chain, model parameters according to Tab. 2

The optimized model parameters of the fractional Maxwell chain are summarized in
Tab. 2. The approximation of the data set is then plotted in Fig. 8.

Comparing the resulting approximations given by the standard and fractional Maxwell
chains clearly shows that the fractional model provides smoother results than the stan-
dard model. The number of optimized parameters also differs. While the standard
Maxwell chain required 13 parameters to get an acceptable fit, the fractional model
yielded suitable approximations for only 7 fitted parameters. We may thus conclude
that the fractional model is able to give more accurate approximation in comparison
to the standard model with even less parameters to be calibrated. The fractional model
can also be efficiently used to smooth and store the experimentally obtained data.

7 Conclusions

Application of fractional viscoelastic models for the description of a polymer inter-
layer in a laminated glass was examined. While an efficient numerical implementation
of such a model is still a subject of an ongoing research, its ability to better capture
a physical reality in comparison to standard models is doubtless. Given a relatively
low number of tuned model parameters to provide a sufficiently accurate prediction
of the material response, it appears advantageous to adopt this model in smoothing
and storing the measured data, e.g., in terms of a theoretically provided mastercurve.
Thus if needed the model parameters of the standard Maxwell chain model can be then
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calibrated to the smoothed mastercurve provided by the fractional Maxwell model.
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