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Abstract 
 

This study aims to estimate freight train derailment severity using the U.S. FRA rail 

accident database spanning from 1997 to 2023. After preprocessing, which included 

data cleaning and normalization, the dataset comprised 3967 records. The data was 

split into training (80%) and testing (20%) sets. Using the NBclust function in the R 

programming environment, optimal clustering for causes was determined, resulting in 

four clusters based on specific criteria. Each cluster was analyzed using four machine 

learning techniques: K-Nearest Neighbors (KNN), Support Vector Machines (SVM), 

Random Forest, and Gradient Boosting. The results were aggregated based on cluster 

weights derived from the clustering process. Performance evaluation metrics, 

including RMSE and Accuracy, were used to assess the models. The findings indicate 

that all classifiers performed well, with KNN demonstrating superior performance, 

achieving an accuracy of 92.36% and an RMSE of 0.26. Additionally, the proposed 

model's average accuracy of 91.53% outperforms the previous benchmark study, 

which reported an average accuracy of 79.56%. These results suggest that the 

proposed model is effective in estimating derailment severity and can be a valuable 

tool for railway safety management. 
 

Keywords: Train Derailment, Clustering, Machine Learning, Freight Train, K-

Nearest Neighbors, Support Vector Machines, Random Forest, Gradient Boosting. 
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1 Introduction 
 

Rail transportation has attracted significant attention from governments and 

policymakers due to its cost-effectiveness, reliability, high capacity, and favorable 

environmental impact. However, despite these advantages, rail incidents often result 

in substantial and irreparable damages. Train derailments, in particular, inflict 

significant economic losses on countries annually, alongside enforcing pressure on 

governments to address safety concerns. In both the United States and Canada, train 

derailments constitute the most common and costly type of rail accident, causing 

damage to vehicles, tracks, infrastructure, and human lives [1]. Similarly, train 

derailments remain a serious issue in Europe, with Germany experiencing a high 

number of rail accidents in 2019 [2] Notably, one of Iran's most devastating 

derailment accidents in February 2005 led to a tragic loss of lives and injuries [3]. 

Freight trains involved in rail accidents typically comprise more than 70 cars, resulting 

in derailments ranging from single locomotives or cars to multiple cars in a single 

incident [4]. In contrast, only a small percentage of severe highway accidents involve 

more than three cars [5]. Furthermore, railway accidents present a higher number of 

potential failure modes due to the size of trains and the complex interactions between 

equipment and infrastructure. In quantitative safety and risk analyses in the rail 

transport sector, these factors must be carefully considered to accurately measure the 

impact of different accident causes, evaluate potential solutions' efficiency, and assess 

their risk implications. 
 
 

 

Train derailment analysis is critical for enhancing rail transportation safety. 

Understanding the point of derailment (POD) and the number of derailed cars is 

essential for planning effective safety strategies. Previous studies have investigated 

factors influencing train derailment and derailment severity. Firstly, Nayak et al. [6] 

established a statistical relationship between speed and the average number of derailed 

cars using FRA data, identifying various influencing factors such as accident cause, 

track type, and train speed. Subsequently, Liu et al. [7] analyzed rail accidents based 

on causes and predictive parameters, and found that railway tracks accounted for a 

significant portion of derailment accidents. Furthermore, Liu et al. [8] examined the 

consequences of derailment by analyzing cause-specific derailments' frequency and 

severity. Subsequent studies by Liu et al. [9, 10] further investigated derailment rates 

and severity, identifying covariates affecting derailment rate estimation and 

developing regression models for severity estimation. The POD, defined as the 

position of the first derailed car or locomotive in a train, significantly influences 

derailment probability and severity [11, 12]. Saccomanno and El-Hage [11] developed 

a geometric model for predicting the number of derailed cars, emphasizing the 

importance of considering the position of cars within a train. Bagheri et al. [3] 

introduced a framework for calculating in-transit risk and optimizing train car 

arrangements to minimize derailment risk.  their model is proposed to estimate the 

probability of derailment by position, using the estimated POD and the number of 

derailed cars. Liu et al. [9] and Li et al. [13] developed models to estimate derailment 

severity, highlighting factors such as train speed, residual train length, and train type's 
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impact. These studies contribute to a comprehensive understanding of train derailment 

dynamics and inform safety enhancement strategies in rail transportation. 

Lotfi et al. [14] also criticized previous studies for their reliance on geometric 

distributions, which assume independence in each car's derailment and a consistent 

probability of derailment along the train. They argued that these assumptions do not 

accurately reflect real-world conditions. Additionally, the failure to consider 

normalized train length in these studies fails to capture the dynamic forces affecting 

the train, leading to instability in car-track interactions and train derailment. To 

address these limitations, Lotfi et al. [14] developed AI techniques to identify causal 

factors of freight train derailment and model freight train derailment severity. They 

focused on identifying factors influencing the severity of freight train derailments. 

They employed various classification methods, including decision trees, random 

forests, support vector machines, and AdaBoost techniques. Their study revealed that 

the decision tree emerged as the most effective classifier for predicting derailment 

severity using the US accident database. Notably, a two-level severity scenario (one 

car derailed or more) yielded superior classification results. The primary factors 

affecting derailment severity were identified as train speed, accident cause, and train 

weight-to-length ratio, with accident cause playing a crucial role in classifying 

severity. 

The primary objective of this study is to develop a new method, following the 

methodology outlined by Lotfi et al. [14], to predict freight train derailment severity. 

By incorporating a two-level severity scenario, our aim is to reduce risk and enhance 

safety in rail transportation while striving for more precise results. To achieve this, 

we employ four common machine learning approaches along with a clustering 

method.  

2 Methods 

In recent years, researchers have increasingly turned to Artificial Intelligence (AI) 

techniques to investigate train derailments. Compared to traditional methods, AI 

offers the potential for more precise predictions. By applying data analysis, machine 

learning, computer vision, and other AI techniques, researchers aim to prevent, detect, 

and respond to train derailment incidents more effectively. In a study by Huang et al. 

[15], a novel systematic approach named IG2-LZs was proposed to analyze the causes 

of passenger train derailment accidents from a management and control perspective. 

This approach employs a Fault Tree analysis to examine all potential accident causes, 

with the weight and attribute value of each cause determined using IG2 and LZs, 

respectively. Bridgelall and Tolliver [16] utilized a clustering approach along with 11 

different machine learning models and Principal Component Analysis (PCA). Their 

findings highlighted strong associations between train derailment and lower track 

classes, non-signalized territories, and movement authorizations within restricted 

limits. 

As previously discussed, assessing the severity of incidents is a crucial aspect of train 

derailment analysis. The proposed methodology, outlined in Figure 1, comprises 

several key steps. Firstly, the data preparation phase involves gathering and cleaning 

data from the U.S. FRA rail accident database spanning from 1997 to 2023. 
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Specifically, derailment incidents on main lines involving trains with a maximum of 

three head-end locomotives are considered. Ten relevant features which may 

influence the severity of a derailment are selected, including train speed, gross tonnage 

of freight, point of derailment (POD), number of head-end locomotives, derailment 

cause, temperature, visibility, weather, and track class. There are five cause group 

categories for the 389 distinctive causes listed in the FRA database, which include 

track, roadbed, and structure (T); signal and communication (S); mechanical and 

electrical failures (E); train operation-human factors (H); and miscellaneous (M) [3]. 

Causes are identified by codes beginning with these letters followed by three digits, 

such as T205 or S003. For this study, human factor and miscellaneous causes were 

excluded.  

After cleaning and preprocessing the data, suitable features are identified for input 

into the models. This study aims to introduce a novel method for estimating the 

severity of freight train derailments. To achieve this goal, a clustering technique is 

applied in conjunction with support vector machine (SVM), Random Forest (RF), 

Decision Tree (DT), and K-Nearest Neighbours (KNN) algorithms, which are 

recognized as powerful machine learning approaches. 

The remaining data is then subjected to a clustering method, which comprises a 

combination of various clustering algorithms. The POD is clustered based on different 

causes, and the data is subsequently partitioned according to the obtained clusters. 

Next, each machine learning algorithm is employed to model the severity of 

derailment within each cluster. 

 Consistent with Lotfi et al. [14], a two-level severity scenario, distinguishing 

between incidents involving one car derailed or more, is applied to each cluster. The 

two-level severity of derailment is determined for each cluster, and the final result is 

computed by considering the prediction results of different clusters, weighted 

accordingly. Subsequently, the final result for each machine learning algorithm is 

obtained. These results are then compared both amongst themselves and with the 

findings of Lotfi et al. [14]. Overall, this methodology enables a comprehensive 

assessment of train derailment severity, considering both clustering techniques and 

machine learning algorithms to achieve more accurate and insightful results.  

The machine learning algorithms are briefly described.  

2.1 Support Vector Machine (SVM) 

Support Vector Machines (SVM) utilize the structural risk minimization principle to 

achieve robust generalization with limited training data. Originally developed by 

Vapnik [17] and colleagues at AT&T Bell Laboratories, SVMs are proficient in 

discerning intricate patterns within complex datasets. This learning algorithm excels 

in discriminative classification by extrapolating from known examples to predict 

classifications for unseen data [18, 19]. 

2.2 Decision Tree 

A decision tree embodies a hierarchical, flowchart-like structure in which each 

internal node denotes a test on a particular attribute. The outcomes of these tests are 

represented by branches, leading to leaf nodes that signify class labels. When 

presented with a data instance represented as a tuple 𝑋, the decision tree assesses the 

attribute values of 𝑋 against its structure, following a path from the root to a leaf node. 
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At the leaf node, the decision tree assigns a class prediction for the given tuple. 

Decision trees are highly interpretable and can easily be transformed into 

classification rules. In the field of predictive modelling, decision trees are particularly 

adept at handling classification tasks where the target variable assumes a finite set of 

values. Notably, decision trees can be constructed more quickly than other 

classification methods [20]. 

 

 

 

Figure 1-The framework of our proposed methodology 
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2.3 Random Forest 

Random Forest, a widely used machine learning technique for developing prediction 

models. Random Forest, initially introduced by Breiman in 2001 [21], comprises a 

collection of classification and regression trees. While decision trees offer an 

intuitive method for prediction, they often lack accuracy for complex datasets. 

Random Forest overcomes this limitation by constructing multiple trees using 

randomly selected training datasets and predictor variables, and aggregating results 

for higher prediction accuracy. Notably, Random Forest maintains the 

interpretability of decision trees while offering superior performance. It is recognized 

for its ability to handle large datasets with numerous predictor variables efficiently. 

Random Forest consistently achieves high prediction accuracy compared to other 

models, making it a preferred choice in classification settings. Each decision tree 

within the Random Forest predicts the class of input, and the final prediction is 

determined by the class receiving the most "votes" from all trees [22]. 

2.4 K nearest neighbour (KNN)  

 The k Nearest Neighbours algorithm (KNN) is an instance-based or lazy learning 

method, widely recognized as one of the simplest machine learning algorithms. Its 

premise lies in the assumption that similar samples belonging to the same class are 

highly probable. The core concept of the KNN algorithm entails selecting the k 

nearest neighbours for each test sample and subsequently using these neighbours to 

predict the class of the test sample. Due to this approach, the KNN algorithm is often 

considered to require no explicit training step. Nonetheless, it remains a popular 

classification method in data mining and statistics, owing to its straightforward 

implementation and noteworthy classification performance [23]. 

2.5 Performance Evaluation 

The dataset is divided into training and test sets. The parameters of the model are 

tuned using the training dataset. To estimate the performance of our proposed method, 

we adopt the root mean square error (RMSE). We also take into account the accuracy 

measure. Then we compare the results of our proposed method with the results of a 

Lotfi et al. [16] study as a benchmark.   

2
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The examination is performed within the R programming environment, where the 

implementation of the codes also took place. For the clustering phase, the NBclust 

function in R was utilized. This function aids in determining the optimal number of 

clusters by evaluating 30 distinct indices such as silhouette width, Davies-Bouldin 

index, and gap statistic. Through the variation of cluster numbers, distance metrics, 
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and clustering techniques, Nbclust explores diverse configurations to identify the most 

suitable solution. 

3 Results 
In this study, the FRA database is utilized to assess freight train derailment severity. 

Following a data preprocessing procedure, certain rows and columns are excluded. 

Ultimately, the dataset comprises 3967 records. The training dataset encompasses 

80% of this data, with the remainder allocated to the test set. Initially, the NBclust 

function within the R programming environment is employed to identify the optimal 

clusters for the causes. The clustering outcomes are depicted in Figure 2. 

 

 
Figure 2- applying NBclust function to discover efficient number of clusters 

The analysis shows the optimal number of clusters to be four. Subsequently, each of 

the four machine learning techniques is applied to each cluster. The results for each 

technique across different clusters are aggregated, taking into account their respective 

weights (calculated as the ratio of each cluster’s population to the total number of data 

points). Performance evaluation is conducted using RMSE and Accuracy measures, 

with the results summarized in Table 1. 

Table 1: The performance of our proposed methodology 

Classifier  RMSE ACCURACY 

SVM 0.260569 0.921281 

RF 0.266954 0.913859 

DT 0.268983 0.910875 

KNN 0.260465 0.923602 
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As illustrated in Table 1, all four classifiers demonstrate excellent performance, with 

KNN exhibiting superior results compared to the others. Subsequently, the 

performance of our proposed method is compared to that of the study by Lotfi et al. 

[16] in terms of Accuracy, with the results presented in Table 2. 

 

Table 2 Comparing the results in term of Accuracy 

Classifier Lotfi et al. (2022) Our proposed method 

SVM 0.801 0.921281 

RF 0.783 0.913859 

DT 0.803 0.910875 

As shown in Table 2, the results of our proposed model surpass the benchmark in 

terms of Accuracy measure. 
 

4 Conclusions and Contributions 
 

In conclusion, this study successfully developed a methodology to predict freight train 

derailment severity, utilizing machine learning techniques and data from the FRA 

database. Through complicated preprocessing and analysis, optimal clusters for 

causes were identified, facilitating accurate severity estimation. The results highlight 

the efficacy of machine learning models, particularly KNN, in predicting derailment 

severity. Furthermore, our proposed model demonstrated superior accuracy compared 

to the benchmark study. Future research could explore additional factors and refine 

the methodology for even more precise predictions. 
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