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Abstract 
 

Due to the increasing speed of high-speed trains, intelligent fault diagnosis of train 

bogies is facing new problems: the diagnostic model for lower speeds is no longer 

applicable, and the lack of fault labels for high speed data makes the training of deep 

learning diagnostic models even more difficult. In order to be able to reliably diagnose 

unlabeled signals of different speeds using a limited number of labeled fault samples, 

this paper conducts an experiment and comparison of the effects of transfer learning 

on bearing faults of a real train. experiments and migration learning effects are 

compared. The axle bearing failure simulation experiment was conducted on a real 

high-speed train car using a rolling test bed, and the monitoring data with fault labels 

at different speeds were obtained; then the cross-migration was conducted using 

multiple speed monitoring data and multiple migration learning methods to obtain the 

cross-speed migration learning fault diagnosis effect; finally, the comparison of the 

distributional differences and the migration learning effect dataset was used to ensure 

the migration learning model could accomplish the monitoring at higher speeds. 

model can accomplish higher speed monitoring data migration diagnosis. At the same 

time, this paper uses a variety of signal pre-processing methods, network models and 

migration learning methods in the proposed framework for comparison, further 

verifying the feasibility and stability of the prediction method, and gives the optimal 

application of reference suggestions. 
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1  Introduction 
The rapid development of machine learning methods enables data-driven fault 

diagnosis methods to overcome the limitations of professional knowledge and manual 

analysis and to be widely used for monitoring industrial machinery that generates 

huge amounts of data[1, 2]. However, for high-speed trains, there are still difficulties 

in the application of intelligent fault diagnosis methods. Monitoring data for high-

speed trains have two distinct characteristics[3, 4]: Firstly, high-speed train running 

usually contain multiple stable speed operating intervals with large speed differences 

that caused by vary railway line conditions and running dispatching strategies. 

Secondly, early failures and minor level damages are more difficult to be detected that 

caused by complex structure of high-speed train bogies and more conservative 

maintenance strategies. These characteristics of monitoring data make high-speed 

train bogie bearing diagnosis a label less (only have labels in some specific working 

conditions) and multiple working condition fault classification problem[5]. 

Earlier intelligent diagnosis research has achieved distinguished model performance 

under sufficient labeled data condition, but when there are few labels and many 

working conditions such as the diagnosis of axle box bearings in high-speed trains, 

high diagnostic accuracy cannot be guaranteed, and even effective fault diagnosis 

cannot be completed[6]. For this problem, the domain transfer learning approach has 

the unique advantage of mapping the source domain (labeled samples) and the target 

domain (unlabeled samples) to the same feature space and aligning the distributions, 

so that the pre-trained model of the source domain can be used to diagnose the target 

domain[7, 8].Li et.al proposed [9] a domain adversarial graph convolutional network 

to achieve unsupervised variable working condition diagnosis. Feng et.al[10] used 

meta-learning to achieve cross-domain transfer learning under few shot condition. Pan 

et.al[11] proposed a generating network to replenish imbalanced dataset. Yang et.al[2] 

designed a an adversarial network architecture named deep partial transfer learning 

network to alleviate model training problems caused by few fault sample.  
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Figure 1 The unlabeled transfer learning challenge for higher speed work data 

With the increase in the speed of high-speed trains, the number of working 

conditions has increased significantly, and the large-scale traversal transfer learning 
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consumes a large amount of computational resources, resulting in poor real-time 

performance. the diagnostic model for lower speed is no longer applicable, and the 

lack of fault labels for high-speed data makes it more difficult to train deep learning 

diagnostic models[12,13]. The strong nonlinearity and lack of interpretability in 

feature extraction by neural networks, as well as the unknown transferability between 

domains, further complicate the issue. Moreover, for higher-speed trains/lines, the 

application time is short, and there is insufficient or even no fault data collected[14]. 

Therefore, how to guide the selection of source domain data and evaluate the 

credibility of the results before transfer learning becomes a major issue in the 

application of transfer learning methods. 

In this paper, a novel transfer learning bearing fault diagnosis method is proposed 

for higher speed working condition, and its contributions are as follows: 

1） A real high-speed train fault axelbox bearing experiment was conducted to 

obtain the vibration monitoring data under various speed working condition that is 

close to real train running scenarios. 

2） By applying various data processing method and transfer learning method, the 

transfer learning diagnosis performance and pretrained models between different 

speed conditions were obtained, showcasing the uncertainty of transfer between 

operating speed conditions.  

3） The proposed diagnostic framework is validated using experimental data and 

pre-trained models in each speed domain, and the experiments prove that the 

proposed method can predict the transfer performance, select the optimal speed 

conditions in the source domain, and complete the high-precision bearing fault 

diagnosis. 

 
 

2  Methods 
 

Based on problem definition of transfer learning, we give a definition for varying 

speed fault diagnosis of axle-box bearing in high-speed train: There are a dataset 𝐷𝑠 

with multiple speed working conditions, where the sub-dataset of the 𝑖th working 

condition is 𝐷𝑖
𝑠 = {𝑥𝑘, 𝑦𝑘}𝑘=1

𝑁𝑠 . Using dataset 𝐷𝑖
𝑠, an effective classifier net 𝑀𝑖 can be 

obtained. There is an unknown rotational speed dataset 𝐷𝑗
𝑡 = {𝑥𝑙}𝑙=1

𝑁𝑡   and does not 

contain labels, how to select the pre-trained model and transfer learning method to 

achieve accurately classification? 

In view of the proposed problems, the adaptive transfer learning strategy model is 

proposed, which is divided into three parts: feature distribution difference calculation, 

cross-transfer learning and ensemble learning mapping relation fitting. Among them, 

the feature distribution difference calculation is to use the existing pre-training for 

cross-computing, use the current working condition pre-training model to extract 

features of other working condition data, and calculate the distribution difference 

between the features of the two working condition data. The cross-transfer learning 
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part is to use the pre-training model of the current rotational speed condition data to 

transfer learning other rotational speed conditions (assuming no labels) to obtain the 

diagnostic accuracy in each cross-task. Finally, the distribution difference is fitted to 

the diagnostic accuracy of transfer learning, and the feature-transfer learning effect 

mapping model is obtained. When there is unlabeled data for unknown rotational 

speed conditions, the existing pre-trained model can be used to extract features and 

predict the classification accuracy of transfer learning. By predicting performance and 

selecting source domain data that can best achieve successful transfer learning, the 

diagnosis accuracy of the target domain can be improved and guaranteed. 

Comparison

Data  100km/h

Classififation Model 
1 2 3 4

Supervised
 Training

100km/h Signal 
features

Test Output

Data  150km/h Test

150 km/h Signal 
features

Output

Discrepancy 
Computation

Euro distance
Cosine similarity
Mutual similarity

Correlation coefficient
Pearson coefficient

JS MMD WD

A cross validation set of all labeled data

Data Discrepancy 
Matrix

Data  100km/h

Classififation Model 
1 2 3 4

Supervised
 Training

100km/h Signal 
features

Test Output

Data  150km/h Test

150 km/h Signal 
features

Output

Transfer Learning
Transfer Classification

Accuracy
Loss

Transfer 
Performance Matrix

 
Figure 1 the Framework of proposed method 

 
1) Cross domain transfer learning 

The monitoring system obtains vibration data at constant rotational speed for each 

speed condition with sufficient labeling information. In order to evaluate and 

investigate the transferability of data between individual speed conditions, it is 

necessary to pre-train a classification model with data from one condition as a labeled 

source domain, and subsequently train the pre-trained model with data from one of 

the other conditions as an unlabeled target domain for transfer learning. After cross 

domain traversing the entire dataset containing 𝑛  working conditions using this 

process, 𝑛  pre-trained models, 𝑛 × (𝑛 − 1)  transferred models and classification 
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accuracies are obtained. From the classification accuracies of cross-domain transfer 

learning, it is possible to assess the transferability between different working 

conditions, and at the same time, the feature extraction models that can accurately 

classify under different working conditions are obtained. 
2) Distribution discrepancy  

From the distribution of data distribution differences, it can be observed that even 

if the monitoring data are affected by factors such as background noise masking and 

component response coupling, the distribution of operating conditions differences is 

still similar to the theory. However, after feature extraction by the nonlinear system 

of neural network, the distribution of classification accuracy has changed greatly. 

Therefore, the transferability between different working conditions is not intuitive and 

linearly related to the difference in speed. In the proposed method, the distribution 

difference between features extracted by the pre-trained model is calculated using the 

features extracted by the pre-trained model as input. The metrics used include 

similarity[15]: Pearson, correlation coefficient, cosine similarity, mutual information; 

Distance measures: Euclidean distance, Wasserstein distance; Other measures: JS 

divergence, MMD. Using multiple difference measures to construct the difference 

data set of different rotational speed conditions, you can show the differences in 

geometry, statistical distribution and other aspects of features, and contain more 

information to obtain better regression effect. For two probability distributions 𝑋, 𝑌, 

there are two samples 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , and the difference vector of the samples is 

calculated as: 
𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 𝑡𝑒𝑛𝑠𝑜𝑟 

= [𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 , 𝑐𝑜𝑠, 𝐼, 𝜌, 𝐷𝐾𝐿, 𝐽𝑆𝐷, 𝑀𝑀𝐷, 𝑊𝐷] 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √(𝒙 − 𝒚)𝑇(𝒙 − 𝒚) 

cos(𝒙 − 𝒚) =
𝒙 ∙ 𝒚

|𝒙| ⋅ |𝒚|
  

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝒙, 𝒚) log
𝑝(𝒙, 𝒚)

𝑝(𝒙)𝑝(𝒚)
𝑦∈𝑌𝑥∈𝑋

 

𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

𝐽𝑆𝐷(𝑃||𝑄) =
1

2
𝐷𝐾𝐿(𝑃||𝑀) +

1

2
𝐷𝐾𝐿(𝑄||𝑀), 𝑀 =

1

2
(𝑃 + 𝑄) 

𝑀𝑀𝐷2(𝑋, 𝑌) = ‖
1

𝑛1
∑ 𝜙(𝒙𝑖) −

𝑛1 

𝑖=1

1

𝑛2
∑ 𝜙(𝒚𝑗)

𝑛2

𝑗=1

‖

ℋ

2

 

𝑊𝐷1(ℙ, ℚ) = sup
||𝑓||

𝐿
≤1

𝔼𝑥~ℙ[𝑓(𝒙)] − 𝔼𝑥~ℚ[𝑓(𝒚)] 

Which 𝐶𝑜𝑣  stands for covariance, 𝜎  represents standard deviation, and 𝜑() 

represents the regenerative Hilbert spatial map. 

3  Real Train Experiment Setup 
The fault test system mainly consists of the whole vehicle rolling test bench and 

the fault bearing. The whole vehicle rolling test bench ensures the consistency of the 

test conditions and the real vehicle conditions, and the fault bearing disassembled by 

the real vehicle ensures the consistency of the test object and the real object, the 

monitoring data obtained by this test system is consistent with the vibration response 
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of a real axle-box bearing failure in a real vehicle. The whole vehicle rolling test bench 

and its structure principle are shown in Figure 3. 

In this test, the statistical high incidence and high risk of failure were studied by 

using NTN CRI-2692 double row tapered roller bearings of high speed train. The 

normal, indentation and stripping failure specimens were selected and mounted on 

two sets of bogies of the whole rolling test rig. The specific bearing specimen 

information is shown in Table 1 

 

 

 

Table 1 Table of bearing positions and damage states 
Bearing 

Type 
No. 

Installation 
Location 

Damage State No. 
Installation 
Location 

Damage 
State 

NTN 
CRI-
2692 

B1 1st axel left Normal B5 3th axel left Normal 

B2 2nd axel left 
Outer ring 
indentation 

B6 4th axel left 
Outer ring 
indentation 

B3 1st axel right 
Outer ring 

peeling 
B7 

3th axel 
right 

Outer ring 
peeling 

B4 2nd axel left 
Corrosion 

failure 
B8 

4th axel 
right 

Corrosion 
failure 

 

 

 

 

 
Figure 2 Structure of Complete train rolling test platform 

 

 

 

 

The test object covers 8 bearings, and 2 measurement points are arranged on each 

bearing, totaling 16 sensors. In the test process, the vehicle wheel pairs are driven by 

the whole vehicle rolling test bench to uniformly accelerate to a number of set speeds 

and then maintain a period of uniform operation. The complete test design is shown 

in Table 2, including 7 test conditions with the speed range of 0~350 km/h, covering 

the speed of the mainline operation. 
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Table 2 Test working condition table 

No. 
Speed 

(km/h) 

Sampling 

time 

Sample 

rate 

RPM of axel 

(r/s) 

1 50 

20s 25.6k 

308.43 
2 100 616.87 
3 150 925.31 
4 200 1233.75 
5 250 1542.19 
6 300 1850.63 
7 350 2159.07 

 

4  VALIDATION EXPERIMENTS 
Due to the powerful feature extraction ability of convolutional neural networks, this 

paper constructs a neural network with five convolutional layers and three fully 

connected layers based on the classic neural network Le-Net. The feature extractor 

uses one-dimensional convolutional layers, and in order to better extract sparse 

features in the signal, larger convolutional kernels (kernel size=128, 64) are set in the 

first and second layers[16]. The pooling layer adopts maximum pooling. Dropout 

layers are set in odd layers to alleviate overfitting. For specific network parameters, 

please refer to Table 3. 

 

Table 3 Network backbone structure and parameters 

Feature Extractor(CNN) 

Layer Filters 
Kernel 

size 
Stride 

Activation 
function 

Conv1 16 1×128 1 
ReLU Pool1 - 4 4 

Dropout1 Rate: 0.5 
Conv2 32 1×64 1 

ReLU 
Pool2 - 4 4 
Conv3 64 1×16 1 

ReLU Pool3 - 4 4 
Dropout3 Rate: 0.5 

Conv4 128 1×4 1 
ReLU 

Pool4 - 2 2 
Conv5 256 1×2 1 

ReLU Pool5 - 2 2 
Dropout5 Rate: 0.5 

Flatten 

Label Classifier Domain Discriminator 

Layer 
Number 

of 
neurons 

Activation 
function 

Layer 
Number 

of 
neuron 

Activation 
function 

FC1 128 ReLU FC1 128 ReLU 
FC2 64 ReLU FC2 64 ReLU 

FC3 
Class 

number Softmax FC3 1 - 
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In order to evaluate the performance of different deep transfer learning methods on 

multi-condition tasks, this paper selected classic transfer learning methods such as 

Deep Adaptation Network (DAN)[17, 18], Deep Correlation alignment for deep 

domain adaptation (DeepCoral)[19], Domain-adversarial neural network 

(DANN)[20], Deep Subdomain Adaptation Network (DSAN)[21], Dynamic 

Adversarial Adaptation Network (DANN)[22] and Batch Nuclear-norm 

Maximization (BNM)[23] for network training. Due to the different requirements of 

different transfer learning methods for network structure, this paper set up three 

network modules: feature extractor, label classifier, and domain discriminator. The 

specific parameters are detailed in Table 3. The ensemble learning module uses the 

Gradient Boosting Regress method to construct regression trees, with specific 

parameters detailed in Hiba! A hivatkozási forrás nem található.. 

 

 

 

A. Transfer learning performance under working condition transversal 

The data of seven different working conditions of the two bogies were cross-

transfer learning, with a total of 42 transfer tasks, using six transfer learning methods 

and two datasets from different bogies. The average transfer accuracy, classification 

accuracy of pre-trained models, and improvement accuracy of 42 transfer tasks in each 

method are calculated in the following table, as shown in the Figure 3 and Hiba! A 

hivatkozási forrás nem található.. 

From the perspective of data form, because the domain training classification 

accuracy of envelope spectral data is higher than that of time domain raw data, even 

if the transfer improvement effect of time domain raw data is better, the transfer 

accuracy of envelope spectrum data is still higher 
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Figure 3 Comparisons of transfer learning accuracy average 

       
(a)DeepCoral model trained by envelope dataset                    (b)BNM model trained by envelope dataset 

Figure 4 Mesh plot of transferred model classification accuracy for various speed 

conditions  

 

Table 4 Prediction results of BNM network trained with envelope spectrum data 

under different working conditions 

Transfer Method/ 

Data type/ 
Channel Target 

Optimum 

Source 

Domain 

ACC 

Predict 

Source 

Domian 

ACC 
ACC 

(Real) 

BNM 

 

Envo 

B1-B4 

50 300 72.8 200 68.8 55.4 

100 150 99.9 150 86.3 99.9 

150 100 100 350 100 100 

200 300 99.9 300 100.5 99.9 

250 200 100 300 100.5 100 

300 250 100 250 100.5 100 

350 300 100 300 95.5 100 

B5-B8 

50 200 100 300 99.8 99.69 

100 50 100 200 95.9 100 

150 200 100 200 98.2 100 

200 300 99.6 300 97.2 99.6 

250 50 100 350 98.2 100 

300 350 100 350 97.54 100 

350 200 100 300 97.9 100 

 

From the perspective of different bogies, the pre-training accuracy of bogies of the 

same structure is not similar, and the transfer accuracy is quite different, but the trend 

is still similar. From the perspective of different method comparisons, the most 

significant is the failure of the DeepCoral method, which exhibits severe negative 

transfer in various data types and bogies, as shown in Figure 6(a). In addition to this, 

the structure transfer method BNM works best in the diagnosis of envelope spectral 

data for B5-B8 bogies, as shown in Figure 6(b). 

When comparing the transfer learning performance between different cross-speed 

tasks, several significant pattern can be discovered. For the overall trend, the efficient 

of transfer learning depends on the ratio of the cross speed (between source and target 
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domain) to the source domain speed. It is same with the trend derived from mechanics 

analysis. But for specific tasks, classification accuracy shows a mutation among the 

same source domain, manifested as exceptionally high or low accuracy. So it is 

infeasible to predict transfer and transfer effects using linear speed condition 

differences. If new working condition data appears, it is necessary to retrain the model 

and achieve the optimal transfer effect by traversing the working condition transfer, 

which will waste a lot of time and computing resources. The data of different 

monitoring objects may be perturbed by uncertainty, but the laws of transferability 

between working conditions obtained by using different transfer learning methods are 

similar. 
 

4  Conclusions and Contributions 
 

this paper proposes a method for evaluating the transfer effect of source domain 

data by integrating weak learners to find the mapping relationship between data 

feature distribution differences and transfer learning effects, achieving source domain 

effect evaluation without the need for model retraining. To verify the proposed 

method, fault simulation experiments were conducted using a real car rolling test 

platform, a real high-speed train vehicle, and real bearing fault parts. Cross-validation 

transfer learning was performed using bearing monitoring data under different speed 

conditions, and the proposed method was validated. The results show that the 

proposed method can accurately evaluate the diagnostic effect of transfer learning and 

provide data processing methods and application recommendations for transfer 

learning models. 
 

 

References 
 

[1] H. Wang, J. Wang, Y. Zhao, Q. Liu, M. Liu, and W. Shen, "Few-Shot Learning 

for Fault Diagnosis With a Dual Graph Neural Network," IEEE Transactions 

on Industrial Informatics, vol. 19, no. 2, pp. 1559-1568, 2022. 

[2] B. Yang, C.-G. Lee, Y. Lei, N. Li, and N. Lu, "Deep partial transfer learning 

network: A method to selectively transfer diagnostic knowledge across related 

machines," Mechanical Systems and Signal Processing, vol. 156, p. 107618, 

2021/07/01/ 2021. 

[3] H. Hu, B. Tang, X. Gong, W. Wei, and H. Wang, "Intelligent fault diagnosis 

of the high-speed train with big data based on deep neural networks," IEEE 

Transactions on Industrial Informatics, vol. 13, no. 4, pp. 2106-2116, 2017. 

[4] G. Xu, D. Hou, H. Qi, and L. Bo, "High-speed train wheel set bearing fault 

diagnosis and prognostics: A new prognostic model based on extendable 

useful life," Mechanical Systems and Signal Processing, vol. 146, p. 107050, 

2021. 

[5] T. Zhang et al., "Intelligent fault diagnosis of machines with small & 

imbalanced data: A state-of-the-art review and possible extensions," ISA 

transactions, vol. 119, pp. 152-171, 2022. 



 

 

 

 

11 

 

 

 

 

[6] C. Cheng, J. Wang, H. Chen, Z. Chen, H. Luo, and P. Xie, "A review of 

intelligent fault diagnosis for high-speed trains: Qualitative approaches," 

Entropy, vol. 23, no. 1, p. 1, 2020. 

[7] C. Li, S. Zhang, Y. Qin, and E. Estupinan, "A systematic review of deep 

transfer learning for machinery fault diagnosis," Neurocomputing, vol. 407, 

pp. 121-135, 2020. 

[8] A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, "A brief review of 

domain adaptation," Advances in data science and information engineering, 

pp. 877-894, 2021. 

[9] T. Li, Z. Zhao, C. Sun, R. Yan, and X. Chen, "Domain Adversarial Graph 

Convolutional Network for Fault Diagnosis Under Variable Working 

Conditions," Ieee Transactions on Instrumentation and Measurement, vol. 70, 

2021 2021, Art. no. 3515010. 

[10] Y. Feng, J. Chen, J. Xie, T. Zhang, H. Lv, and T. Pan, "Meta-learning as a 

promising approach for few-shot cross-domain fault diagnosis: Algorithms, 

applications, and prospects," Knowledge-Based Systems, vol. 235, p. 107646, 

2022/01/10/ 2022. 

[11] T. Pan, J. Chen, J. Xie, Z. Zhou, and S. He, "Deep Feature Generating 

Network: A New Method for Intelligent Fault Detection of Mechanical 

Systems Under Class Imbalance," IEEE Transactions on Industrial 

Informatics, vol. 17, no. 9, pp. 6282-6293, 2021. 

[12] Z. Chen, J. Wu, C. Deng, X. Wang, and Y. Wang, "Deep Attention Relation 

Network: A Zero-Shot Learning Method for Bearing Fault Diagnosis Under 

Unknown Domains," IEEE Transactions on Reliability, 2022. 

[13] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, "Applications of 

machine learning to machine fault diagnosis: A review and roadmap," 

Mechanical Systems and Signal Processing, vol. 138, p. 106587, 2020. 

[14] L. Chen, Q. Li, C. Shen, J. Zhu, D. Wang, and M. Xia, "Adversarial domain-

invariant generalization: A generic domain-regressive framework for bearing 

fault diagnosis under unseen conditions," IEEE Transactions on Industrial 

Informatics, vol. 18, no. 3, pp. 1790-1800, 2021. 

[15] X. Liu and S. Zhang, "Who is closer: A computational method for domain gap 

evaluation," Pattern Recognition, vol. 122, p. 108293, 2022/02/01/ 2022. 

[16] D. Yang, H. R. Karimi, and K. Sun, "Residual wide-kernel deep convolutional 

auto-encoder for intelligent rotating machinery fault diagnosis with limited 

samples," Neural Networks, vol. 141, pp. 133-144, 2021/09/01/ 2021. 

[17] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, "Deep domain 

confusion: Maximizing for domain invariance," arXiv preprint 

arXiv:1412.3474, 2014. 

[18] M. Long, Y. Cao, J. Wang, and M. Jordan, "Learning transferable features 

with deep adaptation networks," in International conference on machine 

learning, 2015, pp. 97-105: PMLR. 

[19] B. Sun and K. Saenko, "Deep coral: Correlation alignment for deep domain 

adaptation," in Computer Vision–ECCV 2016 Workshops: Amsterdam, The 



 

 

 

 

12 

 

 

 

 

Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14, 2016, 

pp. 443-450: Springer. 

[20] Y. Ganin and V. Lempitsky, "Unsupervised domain adaptation by 

backpropagation," in International conference on machine learning, 2015, pp. 

1180-1189: PMLR. 

[21] Y. Zhu et al., "Deep subdomain adaptation network for image classification," 

IEEE transactions on neural networks and learning systems, vol. 32, no. 4, 

pp. 1713-1722, 2020. 

[22] C. Yu, J. Wang, Y. Chen, and M. Huang, "Transfer learning with dynamic 

adversarial adaptation network," in 2019 IEEE international conference on 

data mining (ICDM), 2019, pp. 778-786: IEEE. 

[23] S. Cui, S. Wang, J. Zhuo, L. Li, Q. Huang, and Q. Tian, "Towards 

discriminability and diversity: Batch nuclear-norm maximization under label 

insufficient situations," in Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition, 2020, pp. 3941-3950. 

 




