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Abstract

Railway material management represents a significant challenge in the daily opera-
tions of railway departments. Accurate and efficient prediction of railway material
demand holds substantial practical and academic significance. This paper, based on a
large amount of real railway material data provided by one large railway company in
China, constructs a prediction model using a particle swarm optimization-based neural
network to forecast railway material demand. The study finds that the particle swarm
optimization-based neural network model not only possesses a high prediction accu-
racy but also exhibits strong generalization capabilities, making it particularly suitable
for railway material data characterized by high discreteness and randomness.

Keywords: railway material, prediction model, particle swarm optimization, particle
swarm optimization-based neural network, validation, forecasting.
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1 Introduction

With the rapid development of China’s railway transportation industry, efficient and
accurate prediction of railway material demand has become increasingly important
for ensuring the stable operation and long-term development of the railway system.
Railway materials, including rails, indicators, spring plates, radiator assemblies, bat-
tery signs, lamp head connectors, etc., are indispensable components of daily railway
department operations. This paper aims to explore the significance of railway material
prediction in railway department operations and propose a design scheme for a pre-
diction model based on the particle swarm optimization (PSO) algorithm, in hopes of
providing more efficient and accurate material management and allocation plans for
railway departments.

Firstly, the timely supply of railway materials is key to ensuring the safety of rail-
way operations. A railway system lacking necessary materials may face serious safety
risks. Secondly, the accuracy of material prediction directly affects the efficiency of
railway operations. Moreover, accurate material prediction also helps optimize inven-
tory management, reducing stockpiling and shortages, thus lowering storage costs and
enhancing the efficiency of capital utilization.

Currently, there are many difficulties in the operation and management of railway
materials in China. The first is uncertainty and deviation. Due to the long cycle in
demand reporting and tender procurement, the demand is highly uncertain. The sec-
ond is the issue of inventory capital occupation. In the absence of scientific demand
forecasting, material management personnel often store an excessive amount of rarely
used spare parts, leading to a large amount of capital being tied up in inventory, caus-
ing unnecessary financial waste. Lastly, the management demand is complex and
cumbersome. Due to the lack of scientific data support in demand collection, review,
and other links, the entire process is enormous and very complex, and the accuracy of
demand determined based on experience is also difficult to satisfy.

In summary, railway material demand prediction plays a vital role in ensuring rail-
way safety, improving operational efficiency, reducing costs, and supporting sustain-
able development. In view of this, this paper proposes a railway material demand pre-
diction model based on a particle swarm optimization-based back propagation neural
network (PSO-BPNN), which is especially suitable for the characteristics of railway
material data with its high solution efficiency, strong generalization, and difficulty in
falling into local optima. This paper aims to provide more effective decision-making
support for railway departments by improving the accuracy of predictions.

The subsequent sections of this paper are as follows. Section 2 is a literature review.
Section 3 explains the model methods. Section 4 displays data, model construction,
parameter tuning, and comparison of results with different methods. Section 5 is a
summary.
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2 Literature Review

Railway material forecasting is essential for ensuring the efficient and safe operation
of railway systems. Past scholarly research on railway material forecasting can be
mainly categorized into the following areas.

First, the evolution of methods in railway material forecasting. As a key aspect of
railway system management, the methods for railway material forecasting have under-
gone significant evolution over the past decades. Initially relying on empirical judg-
ment and basic statistical techniques, recent years have seen an adoption of advanced
forecasting models. For instance, [1] discussed the planning of resource maintenance
in railway bridge construction, including the forecasting of material needs and deliv-
ery schedule formulation. Moreover, [2] demonstrated the application of deep learning
methods in predicting the moisture of high-speed railway subgrade materials, mark-
ing a step forward in railway material forecasting towards advanced data analysis and
machine learning technologies.

Second, material research and environmental sustainability. Railway material fore-
casting is not limited to quantifying demand and supply but also involves the selection
and use of materials. [3] highlighted the application of modern high-strength alloy
steels in railway transportation, emphasizing the importance of material innovation
in reducing vehicle weight and enhancing efficiency. Similarly, [4] analyzed the re-
cyclability and recoverability of different types of railway vehicles, underscoring the
importance of material recycling in railway systems for profound environmental sus-
tainability impacts.

Third, safety and risk management. Another critical aspect of railway material
forecasting is safety and risk management. [5] provided a risk analysis of transporting
explosives by rail, revealing potential safety risks in high population density areas. [6]
focused on predicting fire risks of flammable items in railway transport, advocating
for enhanced fire prevention measures. These studies show that safety and risk man-
agement are indispensable components of railway material forecasting.

Fourth, practical applications and future trends. Case studies of practical appli-
cations of railway material forecasting provide a bridge between theoretical research
and practice. The railway wheel wear forecasting method based on universal Kriging
estimation proposed by Cremona et al. demonstrated the effectiveness of forecasting
techniques in real-world applications [7]. [8] explored the application of remote sens-
ing materials and geographic information technology in railway design, indicating the
potential of modern technologies in railway planning and management. These studies
not only showcase current practices but also offer insights into future trends in railway
material forecasting.

Lastly, beyond the railway sector, many industries face challenges in material and
product forecasting. [9] proposed a material demand forecasting model based on the
convolutional neural network (CNN) algorithm, offering significant references for
businesses to improve efficiency and promote development. Additionally, [10] intro-
duced grey relational analysis into grey forecasting models for predicting magnesium
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material demand. Furthermore, [11] presented a PSO-BPNN model for aircraft mate-
rial demand forecasting, achieving commendable results.

In summary, the field of railway material forecasting has transitioned from tradi-
tional methods to modern technologies, encompassing material research, environmen-
tal sustainability, safety, and risk management. With the continual development of
technology, forecasting methods are becoming more precise and efficient, providing
strong support for the optimized management of railway systems.

3 Method

3.1 Particle Swarm Optimization (PSO)

The PSO algorithm is a group intelligence-based optimization technique proposed by
Eberhart and Kennedy in 1995 [12]. It is inspired by the social behavior of bird flocks
or fish schools. In PSO, each potential solution to an optimization problem is consid-
ered a ’particle’ in the search space. Each particle has its own position and velocity,
which are adjusted based on the particle’s own experience and the experiences of other
particles in the group.

The particle swarm algorithm assumes the existence of N particles (population
size), each with K-dimensional attributes (number of features). For each particle i, its
position in the K-dimensional space is represented as a vector Xi = (x1, x2, · · · , xK),
and its flight velocity as a vector Vi = (v1, v2, · · · , vK). Each particle has a fitness
value determined by the objective function and is aware of the best position it has
discovered so far (pbest) and its current position Xi. This can be seen as the particle’s
own flying experience. In addition, each particle knows the best position discovered
so far by all particles in the group (gbest), which can be considered as the experience
of its companions. The particle decides its next move based on its own experience and
the best experience among its companions.

PSO is initialized with N random particles (random solutions). Then, it iterates to
find the optimal solution. In each iteration, particle i updates itself by tracking two
’extremes’ (pbest, gbest). After finding these two optimal values, the particle updates
its velocity and position using the following formulas:

vi = w · vi + c1 · rand() · (pbesti − xi) + c2 · rand() · (gbesti − xi) (1)

xi+1 = xi + vi (2)

where vi is the particle’s velocity, xi is the particle’s position, rand() is a random
number between (0,1), c1 is the self-cognitive factor, c2 is the social-cognitive factor,
w is the inertia weight, and c1, c2, w are all greater than 0. Conventionally, c1 and c2
are generally set between (0,2), and w is typically set between (0.5,0.9).

The flowchart for the standard PSO algorithm is as follows.
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Figure 1: PSO algorithm flow chart.

3.2 Back Propagation Neural Network (BPNN)

Neural Networks (NN) are computational models that mimic the workings of the hu-
man brain, used to solve a variety of complex pattern recognition and prediction prob-
lems. They consist of a large number of nodes (or neurons), typically arranged in
layers. Each neuron is connected to multiple other neurons through weights, simulat-
ing the synapses in biological neural systems. The Backpropagation Neural Network
(BPNN) is a type of multi-layer feedforward neural network, trained using the back-
propagation algorithm, primarily used in supervised learning scenarios. It includes an
input layer, one or more hidden layers, and an output layer.

The working principle of BPNN includes two parts. First is the forward propaga-
tion part. Input signals propagate from the input layer through the hidden layers to the
output layer within the neural network. Each neuron receives weighted inputs from
neurons of the previous layer, then processes them through an activation function to
produce an output. This is expressed by the formula:

a(l+1) = f(W (l) · a(l) + b(l)) (3)

where a(l) is the activation value of the l-th layer, W (l) and b(l) are the weights and
biases of the l-th layer, respectively, and f is the activation function.

The second part is the backward propagation. Neural networks are trained through
the backpropagation algorithm, which involves adjusting weights and biases to mini-
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mize the difference between the predicted output and actual output. The loss function
L is used to compute the error, a common one being mean squared error (MSE):

L =
1

n

∑
(ypred − ytrue)

2 (4)

where n is the number of samples, ypred is the network’s predicted value, and ytrue is
the actual value.

3.3 Particle Swarm Optimization Back Propagation Neural Net-
works (PSO-BPNN)

The training process of BPNN depends on the selection of initial weights. However, as
the network weights are randomly initialized, this can lead to randomness in training
and a propensity to fall into local optima, resulting in low reliability and poor gen-
eralization ability of the trained network. A PSO-BPNN utilizes the particle swarm
algorithm to optimize the initial weights of the network. The particle swarm algorithm
is simple to operate and highly efficient in optimization, characterized by its global
optimization and high computational precision. Compared to other metaheuristic al-
gorithms (such as genetic glgorithms, GA), the PSO algorithm is simpler, requiring
less time per iteration, which is particularly important for larger datasets. Therefore,
the particle swarm algorithm can be used to optimize BPNN, enhancing the network’s
global search capability and generalization ability, thus making the optimized network
more accurate in prediction.

The basic steps for training a neural network using PSO are as follows:
1. Set the PSO hyperparameters, including c1, c2, w, the number of particles N , the

number of iterations, etc., as well as the neural network hyperparameters, including the
number of network layers, the number of neurons in each layer, activation functions.

2. Calculate the total number of weight parameters K of the neural network,
use K as the dimension of the particle swarm space, and randomly initialize N K-
dimensional particles.

3. Calculate the fitness value of each particle (using MSE as the metric), and deter-
mine pbest and gbest.

4. Update the particles’ velocity and position using formulas and recalculate the
new fitness value.

5. Repeat steps 3 and 4 until the iteration stop condition is met. Retain the optimal
particle feature parameters as the optimal neural network weights.

6. Use the optimal neural network weights for evaluation and prediction.
The flowchart for PSO-BPNN is as follows.
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Figure 2: PSO-BPNN model flow chart.

4 Experiments

4.1 Data

We collected daily operational material outflow data from vehicle and locomotive
depots under the Chinese railway group, including major provinces in China, like
Guangdong and Hunan. The data span from January 2019 to December 2023. After
data processing and cleaning, we obtained 21,032 records, which are used for model
analysis. In the analyzed data, the ’Quantity’ field is the dependent variable (y), while
the ’Material Number’ and ’Order Date’ fields are the independent variables. The
analyzed data is shown in the following table.

Material Number Order Date Quantity
910000010043 2019-01-09 6.0
910000010043 2019-01-16 4.0
910000010043 2019-01-18 4.0
910000010043 2019-01-23 2.0
910000010043 2019-01-29 4.0

... ... ...
945300200047 2023-04-14 4.0
945300200047 2023-04-23 4.0
945300200047 2023-04-28 3.0
945300200047 2023-05-06 4.0
945300200047 2023-05-24 1.0

Table 1: Railway operational material outflow data.

After one-hot encoding of categorical variables and considering previous periods of
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’Quantity’ as features (lag order = 15), we ultimately yield a combination of numerical
variables and binary variables, totaling over a hundred dimensions as features X (in
this case, the dimensionality of X is 163, i.e., dom(X) = 163).

Finally, we take the most recent two months of data (from November 1, 2023, to
December 30, 2023) as the prediction set. From the remaining data, 80% is used as
the training set and 20% as the validation set. Consequently, the sample sizes for the
training set, validation set, and prediction set are 15,093, 3,774, and 665, respectively.

4.2 Model Construction

The experiment findings indicate that a neural network comprising three hidden layers
is already capable of adequately performing the task of material forecasting. As a
result, a five-layer fully connected neural network is constructed, with the input layer
dimension equal to the feature X dimension. The first hidden layer contains 100
neurons, the second hidden layer has 50 neurons, and the third hidden layer comprises
25 neurons. Except for the output layer, which employs the LeakyReLu activation
function to ensure non-negative network output values, all other layers utilize ReLu
as the activation function.

We use MSE as the Loss function and calculate the total number of neural network
weight parameters K as follows:

K = (ninput + 1) ∗ 100 + (100 + 1) ∗ 50 + (50 + 1) ∗ 25 + (25 + 1) ∗ noutput (5)

where ninput and noutput mean the number of neurons in the input and output layers of
network. In this case, we have ninput = dom(X) = 163, noutput = 1 and K = 22751.

4.3 Parameters Tuning

Based on experience, we set the particle swarm parameter w to follow a uniform
distribution between 0.5 and 0.9, and N = 100. The parameters c1 and c2 are found
through grid search with a step of 0.2 within the interval (0.2,1.2) to find the optimal
parameter values. After several comparative experiments, we set the number of PSO
iterations to 300 (training 300 times is sufficient to reach convergence). Additionally,
the weights pretrained by PSO are directly used as the final weights of the neural
network (continuing to train with gradient descent on the basis of PSO pretraining not
only does not improve model performance but may even worsen the results). We also
calculate the mean absolute percentage error (MAPE) for both the validation set and
the test set to measure the performance of different parameter combinations as shown
in the following table.

We found that the model performs optimally when the (c1, c2) parameter combina-
tion is set to either (0.6,0.8) or (1,0.2), i.e., validation MAPE is the lowest. Since the
model yields satisfactory results when parameters are around (1,0.2)—given that the
validation MAPE values for (0.4,0.2), (0.6,0.2), and (0.8,0.2) are relatively low—we
choose (1,0.2) as the final setting for the PSO hyperparameters.
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c1 c2 Validation MAPE Testing MAPE
0.2 1.2 0.76 0.87
0.4 1.2 0.92 1.00
0.6 1.2 0.97 1.04
0.8 1.2 0.96 1.07
1.0 1.2 0.67 0.89
1.2 1.2 1.00 1.10
0.2 1.0 0.89 1.04
0.4 1.0 0.67 0.84
0.6 1.0 0.81 0.97
0.8 1.0 0.67 0.85
1.0 1.0 0.66 0.86
1.2 1.0 0.68 0.86
0.2 0.8 0.87 1.02
0.4 0.8 0.85 0.95
0.6 0.8 0.64 0.84
0.8 0.8 0.75 0.95
1.0 0.8 0.90 1.06
1.2 0.8 0.67 0.88
0.2 0.6 0.98 1.06
0.4 0.6 0.66 0.85
0.6 0.6 0.78 0.91
0.8 0.6 0.67 0.86
1.0 0.6 0.68 0.83
1.2 0.6 0.74 0.89
0.2 0.4 0.75 0.95
0.4 0.4 0.74 0.85
0.6 0.4 0.86 0.98
0.8 0.4 0.65 0.85
1.0 0.4 0.67 0.79
1.2 0.4 0.68 0.85
0.2 0.2 0.87 1.03
0.4 0.2 0.67 0.82
0.6 0.2 0.68 0.82
0.8 0.2 0.69 0.86
1.0 0.2 0.64 0.84
1.2 0.2 0.73 0.91

Table 2: Performance of PSO-BPNN with various c1 and c2 parameters.

4.4 Comparisons between Different Models

To ensure the reliability of our model results, we conducted both vertical (with SGD-
trained, PSO+SGD-trained BPNN) and horizontal (with models from different do-
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Figure 3: The fitting performance of the PSO+BPNN model on the validation set for
a randomly selected material item.

mains) comparisons of the performance of various forecasting methods. Specifi-
cally, we compared traditional machine learning methods (SVM, Random Forest,
XGBoost), conventional deep learning methods (RNN, LSTM), traditional time se-
ries methods (Panel Data Regression), and the same neural network architecture but
trained using traditional methods (SGD, PSO+SGD) in terms of MAPE on both the
validation and testing sets, as shown in the table below.

Model Validation MAPE Testing MAPE
PSO+BPNN (Ours) 0.64 0.84
SGD+BPNN 1.06 1.25
PSO+SGD+BPNN 0.94 1.22
SVM 0.68 0.78
Random Forest 0.66 0.89
XGBoost 0.67 0.90
Panel Data Regression 0.67 0.84
RNN 0.88 1.26
LSTM 1.10 1.19

Table 3: Comparison of forecasting methods on validation and testing sets.

From the table above, it is evident that our PSO+BPNN model has the highest
prediction accuracy. The performance of pretraining with PSO followed by further
training with SGD is significantly inferior to training exclusively with PSO. This
demonstrates that PSO has stronger generalization capabilities, while SGD may lead
to poorer model predictions due to overfitting issues.

To more vividly display the results of different models, we randomly select an item
of materials and compare the fitting effects of various methods on the validation set
for this item. The results are shown in the following two figures.
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Figure 4: The fitting performance of other methods on the validation set for the same
material item.

From Figure 3 and Figure 4, it is evident that our PSO+BPNN model not only
has the highest fitting accuracy (MAPE=0.38) but also shows fluctuation trends most
consistent with the real trends. Among other models, both XGBoost and random forest
models show fluctuation trends that are relatively consistent with the actual trends,
but their MAPE values are higher than our model. The MAPE of the SVM model
(MAPE=0.39) is closest to that of our model, yet its fluctuation trend significantly
differs from the real trend.

5 Conclusion

This paper investigates the demand forecasting problem in the railway material do-
main, employing the PSO+BPNN method to study the material outflow data of various
regions from one large railway company in China. The study finds that, compared to
traditional gradient-based optimization methods, PSO exhibits stronger generalization
capabilities due to its metaheuristic search characteristics, is less prone to falling into
local optima, and has a higher optimization efficiency. Through horizontal and vertical
comparisons of different forecasting methods, we find that PSO+BPNN achieves the
highest prediction accuracy, and the overall time series it predicts aligns more closely
with the actual time series. This proves the practical value of PSO+BPNN in the field
of railway material forecasting.
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